Bt
PHP

THIRD EDITION

Learn PHP the
Quick and Easy Way!

VISUAL QUICKSTART GUIDE

PHP

FOR THE WEB
Third Edition

Larry Ullman

Peachpit Press

Visual QuickStart Guide

PHP for the Web, Third Edition
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.
To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2009 by Larry Ullman

Editor: Rebecca Gulick

Copy Editor: Bob Campbell
Production Coordinator: Myrna Vladic
Compositor: Debbie Roberti

Indexer: Julie Bess

Cover design: Peachpit Press

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an "As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Macintosh
and Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered
trademarks of Microsoft Corp. Other product names used in this book may be trademarks of their own
respective owners. Images of Web sites in this book are copyrighted by the original holders and are used with
their kind permission. This book is not officially endorsed by nor affiliated with any of the above companies.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-44249-9
ISBN 10: 0-321-44249-0

987654321

Printed and bound in the United States of America

www.peachpit.com

For Jessica, Gina, and Rich,
with gratitude for all of their
love and support.

Special thanks

Many, many thanks to everyone at Peachpit
Press for their assistance and hard work,
especially:

'The best darn editor in the world, Rebecca
Gulick. Thanks for, well, just about every-
thing. As always, it's my pleasure to be able
to work with you.

Bob Campbell, for his attention to detail.

Deb Roberti and Myrna Vladic, who take a
bunch of disparate stuff and turn it into a
book. Julie Bess for her excellent indexing,.

Everyone at Peachpit for doing what's
required to create, publish, distribute,
market, sell, and support these books.

My sincerest thanks to the readers of the
other editions of this book and my other
books. Thanks for your feedback and
support and for keeping me in business.

Finally, thanks to: Rasmus Lerdorf (who got
the PHP ball rolling); the people at PHPnet
and Zend.com; those who frequent the vari-
ous newsgroups and mailing lists; and the
greater PHP and open source communities
for developing, improving upon, and support-
ing such wonderfully useful technology.

TABLE OF CONTENTS

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Introduction ix
Getting Started with PHP 1
Basic XHTML Syntaxcooooiiiiinn... 2
BasicPHP Syntax................oooiiiiiinnen. 7
Testing Your Script..............oooooii 10
Sending Text to the Browser 16
Sending HTML to the Browser 20
Using White Space................coooiiiiit. 22
Adding Comments to Scripts.................... 25
Basic Debugging Steps........................L. 28
Variables 31
What Are Variables?o... L 32
Variable Syntax ... 36
Types of Variables......................... 38
Assigning Values to Variables 41
Understanding Quotation Marks................ 44
HTML Forms and PHP 47
Creating a Simple Form......................... 48
Using GET or POST ..., 52
Receiving Form DatainPHP 54
Displaying Errors ... 59
Error Reporting. ... 62
Manually Sending DatatoaPage................ 65
Using Numbers 71
CreatingtheForm 72
Performing Arithmetic.......................... 75
Formatting Numbers............................ 80
Understanding Precedence 82
Incrementing and Decrementing a Number 84
Creating Random Numbers 86

SIN3LNO) 10 378V]L

TABLE OF CONTENTS

Table of Contents

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Using Strings 89
Creatingthe HTMLForm 90
Connecting Strings (Concatenation) 93
Handling Newlines.............................. 97
HTMLandPHP..............ooooiiiiiiat. 99
Encoding and Decoding Strings................ 103
Finding Substrings..........................L. 108
Replacing Parts of a String 112
Control Structures 115
Creatingthe HTML Form 116
Theif Conditional.............................. 121
Validation Functions..................... ..., 124
Usingelse............oooviiiiiiiii 127
More Operators...........coviiiiiiiiiiiian 130
Usingelseif ... 138
The Switch Conditional 142
The for Loop.....vvvviiiin i 146
Using Arrays 151
WhatIsan Array?..........cooiiiiiiiion... 152
Creatingan Array.............oovvvvviininn... 154
AddingItems toan Arrayo.... 158
Accessing Array Elements...................... 161
Creating Multidimensional Arrays.............. 165
SOrting Arraysoovvviviiiiiiiii e 170
Transforming Between Strings and Arrays. 174
Creating an Array fromaForm................. 179
Creating Web Applications 185
Creating Templates............................ 186
Using External Files.....................ooooo.. 194
UsingConstants................cooooiiiainne 200
Working with the Date and Time............... 205
Handling HTML Forms with PHP, Revisited208
Making Forms Sticky........................... 214
SendingEmail ... 222
Output Buffering.........................o.. .. 227
Manipulating HTTP Headers................... 231

vi

Table of Contents

Chapter 9:

Chapter 10

Chapter 11

Chapter 12:

Cookies and Sessions 237
What Are Cookies? ...t 238
Creating Cookiesooooiie. 241
Reading from Cookies.......................... 248
Adding Parameters to a Cookie 254
Deleting a Cookie..................oooi. 259
What Are Sessions?..................oooal 262
Creatinga Sessionoviiiininn 263
Accessing Session Variables.................... 267
Deletinga Sessionoooiun.... 269
Creating Functions 271
Creating and Using Simple Functions 272
Creating and Calling Functions

That Take Arguments...................... 279
Setting Default Argument Values............... 283
Creating and Using Functions That

ReturnaValuecooiiiinat 286
Understanding Variable Scope 291
Files and Directories 297
File Permissionsoooiiii... 298
WritingtoFiles ... 303
LockingFiles ... 311
Reading from Files..................ooooiii. 314
Handling File Uploadsc..0. 317
Navigating Directories 325
Creating Directoriescooenen. 331
Reading Files Incrementally.................... 339
Intro to Databases 345
IntroductiontoSQL ..o, 346
Connectingto MySQLoooiat 348
MySQL Error Handling. 352
Creating and Selecting a Database 355
CreatingaTableo.. . 358
Inserting Data into a Database................. 363
SecuringQueryData........................L 368
Retrieving Data from a Database............... 371
Deleting Data in a Database.................... 377
Updating Data in a Database................... 383

vii

SIN3LNO) 10 378V]L

TABLE OF CONTENTS

Table of Contents

Chapter 13:

Appendix A:

Appendix B:

Regular Expressions 391
What Are Regular Expressions? 392
Matching Patterns......................ooo. 394
Using Literals...................ooo . 399
Using Metacharacters.......................... 400
Using Quantifiers......................oooo. 402
Using Classes.........oooviuiiiiiiiiiiiinn.... 404
Matching and Replacing Patterns 406
Installation and Configuration 411
Installation on Windows....................... 412
Installationon MacOSX................ooo.. 415
Using the MySQL Client. 419
Creating MySQL Users......................... 422
PHP Configuration.ooooe. 428
Resources and Next Steps 431
Online PHP Resources 432
Database Resources 435
Top Ten Frequently Asked

Questions (or Problems)................... 436
Next Steps....oovviiiiiiiiiiiiiiiiiiiian 440
Tables ... 442
Index 445

viii

INTRODUCTION

When I began the first edition of this book,
back in the year 2000, PHP was a little-known
open source project. It was adored by techni-
cal people in the know but not yet recognized
as the popular choice for Web development
that it is today. When I taught myself PHP,
very little documentation was available on
the language—and that was my motivation
for writing this book in the first place.

Today things are different. The Internet has
gone through a boom and a bust and has
righted itself. Furthermore, PHP is now the
reigning king of dynamic Web design tools
and has begun to expand beyond the realm
of Web development. But despite PHP’s
popularity and the increase in available
documentation, sample code, and examples,
a good book discussing the language is still
relevant. Particularly as PHP makes its sixth
major release, a book such as this—which
teaches the language in simple but practical
terms—can be your best guide in learning the
information you need to know.

This book will teach you PHP, providing
both a solid understanding of the fundamen-
tals and a sense of where to look for more
advanced information. Although it isn't a
comprehensive programming reference,
through demonstrations and real-world
examples, this book provides the knowledge
you need to begin building dynamic Web
sites and Web applications using PHP.

NOILONAOYLN]

WHAT Is PHP?

Introduction

What Is PHP?

PHP originally stood for Personal Home
Page. It was created in 1994 by Rasmus
Lerdorfto track the visitors to his online
résumé. As its usefulness and capabilities
grew (and as it began to be utilized in more
professional situations), PHP came to mean
PHP: Hypertext Preprocessor. (The defini-
tion basically means that PHP handles data
before it becomes HTML—which stands
for Hypertext Markup Language.)

According to the official PHP Web site, found
at www.php.net (Figure i.1), PHP is an HTML
embedded scripting language. I'll explain this
definition in more detail.

To say that PHP is HTML embedded means
that it can be written within your HTML
code—HTML being the code with which all
Web pages are built. Therefore, programming
with PHP starts off as only slightly more com-
plicated than hand-coding HTML.

Also, PHP is a scripting language, as opposed
to a programming language. This means that
PHP is designed to do something only after
an event occurs—for example, when a user
submits a form or goes to a URL (Uniform
Resource Locator—the technical term for

a Web address). Conversely, programming
languages such as Java and C can be used to
write stand-alone applications, which may or
may not involve the Web. The most popular
example of a scripting language is JavaScript,
which commonly handles events that occur
within the Web browser. Another way to refer
to the different types of languages is to use
the term interpreted for languages such as
PHP and JavaScript, which can't act on their
own, and compiled for those like C and Java,
which can.

Figure i.1 At the time of this writing, this is the
appearance of the official PHP Web site, located at
www . php . net. Naturally, this should be the first place
you look to address most of your PHP questions

and curiosities.

www.php.net
www.php.net

Introduction

What PHP Is Not

The thing about PHP that confuses

most new learners is what PHP can’t do.
Although you can use the language for an
amazing array of tasks, its main limitation
is that PHP cannot be used for client-side
features found in some Web sites.

Using a client-side technology like
JavaScript, you can create a new browser
window, add mouseovers, make pop-up
alerts, resize the browser window;, find
out the screen size on the user’s machine,
and dynamically generate and alter forms.
None of these tasks can be accomplished
using PHP (because PHP is server-side,
whereas those are client-side issues). But,
you can use PHP to create JavaScript, just
as you can use PHP to create HTML.

When it comes time to develop your own
PHP projects, remember that you can
only use PHP to send information (HTML
and such) to the Web browser. You can’t
do anything else within the Web browser
until another request from the server has
been made (a form has been submitted or
alink has been clicked).

You should also understand that PHP is a
server-side technology. This refers to the

fact that everything PHP does occurs on the
server (as opposed to on the client, which is
the computer being used by the person view-
ing the Web site). A server is just a computer
set up to provide the pages you see when you
go to a Web address with your browser (for
example, Firefox, Microsoft Internet Explorer,
or Safari). I'll discuss this process in more
detail later (see “How PHP Works”).

Finally, PHP is cross-platform, meaning

that it can be used on machines running
Unix, Windows, Macintosh, and other oper-
ating systems. Again, were talking about the
servers operating system, not the client’s.

Not only can PHP run on almost any operat-
ing system, but, unlike most other program-
ming languages, it enables you to switch your
work from one platform to another with few
or no modifications.

At the time this book was written, PHP

was simultaneously in versions 4.4.9 and
5.2.6. (The 5.x branch has not yet been
universally adapted, so the older version is
still being maintained for any major security
concerns.) This book was actually tested
using a development version of PHP 6, the
next major release of the language (it's release
date is not known at the time of this writ-
ing). The primary change in PHP 6—and it's a
big one—is support for Unicode. Unicode, in
short, provides a way to represent every char-
acter from every language. Thus, in PHP 6,
you can handle strings in any language; even
variable and function names can be written
in any language.

¢dHd SI LVHM

WHAT Is PHP?

Introduction

The other significant change in PHP 6 is the
removal of several outdated features. Every
removed feature has been disabled in PHP’s
default configuration for some time, and
although you could enable it, the recommen-
dation was not to use it at all. In PHP 6, you
won't have the choice.

Although this book was written using a
development version of PHP 6, all of the code
is backward compatible, at least to PHP ver-
sion 5.x, if not to 4.x. In a couple of situations
where you might still have and be using a
feature that will be removed in PHP 6, a note
in a sidebar or a tip will indicate how you can
adjust the code accordingly.

More information can be found at PHP.net
and www. zend . com, the minds behind the core
of PHP (Figure i.2).

Figure i.2 This is the home page of Zend, creators
of the programming at the heart of PHP. The site
contains much useful software as well as a code
gallery and well-written tutorials.

www.zend.com

Introduction

Why Use PHP?

Put simply, PHP is better, faster, and easier
to learn than the alternatives. All Web sites
must begin with just HTML, so you can
create an entire site using a number of static
HTML pages. But basic HTML is a limited
approach that does not allow for flexibility
or responsiveness. Visitors accessing HTML
pages see simple pages with no level of cus-
tomization or dynamic behavior. With PHP,
you can create exciting and original pages
based on whatever factors you want to con-
sider. PHP can also interact with databases
and files, handle email, and do many other
things that HTML can't.

Webmasters learned a long time ago that
HTML alone won't produce enticing and last-
ing Web sites. Toward this end, server-side
technologies such as PHP have become the
norm. These technologies allow Web-page
designers to create Web applications that are
dynamically generated, taking into account
whichever elements the programmer desires.
Often database-driven, these advanced sites
can be updated and maintained more readily
than static HTML pages.

When it comes to choosing a server-side
technology, the primary alternatives to PHP
are CGI scripts (Common Gateway Interface,
commonly, but not necessarily written in
Perl), ASPNET (Active Server Pages), Adobe's
ColdFusion, JSP (JavaServer Pages), and Ruby
on Rails. JavaScript isn't truly an alternative
to PHP (or vice versa) because JavaScript is

a client-side technology and can't be used

to create HTML pages the same way PHP or
these others can.

édHd 3SN AHM

WHY Use PHP?

Introduction

So the question is, why should a Web
designer use PHP instead of CGL, ASPNET,
JSP, or whatever to make a dynamic Web site?

¢ PHP is much easier to learn and use.
People—perhaps like you—without
any formal programming training can
write PHP scripts with ease after reading
this one book. In comparison, ASPNET
requires an understanding of VBScript,
C#, or another language; and CGI requires
Perl (or C). These are more complete
languages and are much more difficult
tolearn.

¢ PHP was written specifically for
dynamic Web page creation. Perl (and
VBScript and Java) were not, and this fact
suggests that, by its very intent, PHP can
do certain tasks faster and more easily
than the alternatives. Id like to make it
clear, however, that although I'm suggest-
ing PHP is better for certain things (specifi-
cally those it was created to do), PHP isn't a
better programming language than Java or
Perl—they can do things PHP can't.

¢ PHP is both free and cross-platform.
So, you can learn and use it on nearly any
computer and incur no cost. Furthermore,
its open source nature means that PHP’s
users are driving its development, not
some corporate entity.

¢ PHP is the most popular tool available
for developing dynamic Web sites. At
the time of this writing, PHP is in use on
over 20 million domain names (Figure i.3).
By mastering this technology, you'll pro-
vide yourself with either a usable hobby
or alucrative skill.

Usage Stats for April 2007
PP: 30,917,850 domains, 1,224,181 1P addresses
Bistorat

PHP Usage for Jul 2007

Yieus €8 aise see hiw popuar PHE i relative to other Apache modules ot SerurtySpace’s Web Survey. Spofler: PHI
s the most pegatar,

There is aise a Erogramming Comenunity Index provided by TIDBE

There are detalied STals sbout PHE by version, by countries, By wel Servers and evalution from the "PHP verton
Iricker”, s by aen.net

 Comyrmtt, £ 2081 3008 The PYF Grnn THSC vty grvsted by Tafma o,
4 e v o v e £ w441 S04

Figure i.3 Netcraft’s (ww.netcraft.com) graphic
shows PHP’s phenomenal growth since 2000.

Xiv

www.netcraft.com

Introduction

How PHP Works

PHP is a server-side language, which means
the code you write in PHP resides on a host
computer that serves Web pages to Web
browsers. When you go to a Web site (www.
DMCinsights.com, for example), your Internet
service provider (ISP) directs your request to
the server that holds the www.DMCinsights.
com information. The server reads the PHP
code and processes it according to its
scripted directions. In this example, the PHP
code tells the server to send the appropriate
Web page data to your browser in the form of
HTML (Figure i.4). In short, PHP creates an
HTML page on the fly based on parameters
of your choosing,

Client URL Request ~ Server

.| Lot i T -.?-mlllllllllllllll & ||||||||.||- = B. 3 = .
- HTML f [[[‘

Figure i.4 This graphic demonstrates (albeit in very simplistic terms) how the process works between a client, the
server, and a PHP module (an application added to the server to increase its functionality) to send HTML back to the
browser. All server-side technologies use a third-party module on the server to process the data that’s sent back to
the client.

XV

SHYOM dHd MOH

www.DMCinsights.com
www.DMCinsights.com
www.DMCinsights.com
www.DMCinsights.com

How PHP WoRKS

Introduction

This differs from an HTML-generated site

in that when a request is made, the server
merely sends the HTML data to the Web
browser—no server-side interpretation
occurs (Figure i.5). Hence, to the end user’s
browser, there may or may not be an obvi-
ous difference between what home .html and
home . php look like, but how you arrive at that
point is critically altered. The major differ-
ence is that by using PHP, you can have the
server dynamically generate the HTML code.
For example, different information could

be presented if it's Monday as opposed to
Tuesday or if the user has visited the page
before. Dynamic Web page creation sets
apart the less appealing, static sites from the
more interesting and, therefore, more visited,
interactive ones.

The central difference between using PHP
and using straight HTML is that PHP does
everything on the server and then sends the
appropriate information to the browser. This
book covers how to use PHP to send the right
data to the browser.

Client URL Request

A

' HTML

Server
> w T T

—8

Figure i.5 Compare this direct relationship of how a server works with basic HTML to that of Figure i.4. This is also
why HTML pages can be viewed in your browser from your own computer—they don’t need to be “served,” but
dynamically generated pages need to be accessed through a server that handles the processing.

Introduction

Open a Recent item Create New Create from Samples

B) v T co iryle them
- 9 Coldrusion) Tremesn
o 1 PR 5] srarter Fage (Theme)
o) AP VELcrip: T Srarrer Fage hasict
&] LT {Enrin pager 3 mors
= css
T hraserien Extend
o @ Oreamwesver Exchange =

\ Gontng aneds Adnbed Creative Suied 4
1] MeswFentures - Dl e G hed KBRAE i prind, b,

. widrs and mebsile design

O Resourees s

Ll Dint shes again

Figure i.6 The popular Dreamweaver IDE supports
PHP development, among other server-side
technologies.

What You’ll Need

The most important requirement for working
with PHP—because it's a server-side scripting
language—is access to a PHP-enabled server.
Considering PHP’s popularity, your ISP or Web
host most likely has this option available to
you on their servers. You'll need to contact
them to see what technology they support.

Your other option is to install PHP and a
Web server application (like Apache) on your
own computer. Users of Windows, Mac OS

X, or Linux can easily install and use PHP

for no cost. Directions for installing PHP are
available in Appendix A, ‘Installation and
Configuration. If youre up to the task of
using your own PHP-installed server, you can
take some consolation in knowing that PHP
is available for free from the PHP Web site
(www . php.net) and comes in easy-to-install
packages. If you take this approach, and I
recommend that you do, then your computer
will act as both the client and the server.

The second requirement is almost a

given: You must have a text editor on your
computer. Crimson Editor, WordPad,
TextWrangler, and similar freeware applica-
tions are all sufficient for your purposes; and
BBEdit, EditPad, TextMate, and other com-
mercial applications offer more features that
you may appreciate. If youre accustomed to
using a graphical interface (also referred to as
WYSIWYG—What You See Is What You Get)
like Adobe Dreamweaver (Figure i.6), you
can consult that application’s manual to see
how to program within it. For help in finding
a good PHP-capable editor, head to http://
www.dmcinsights.com/links/1.

a3aN 11,N0A LVHM

http://www.dmcinsights.com/links/1
http://www.dmcinsights.com/links/1
www.php.net

WHAT You’LL NEED

Introduction

Third, you need a method of getting the
scripts you write in your text editor to the
server. If you've installed PHP on your own
computer, you can save the scripts to the
appropriate directory. However, if youre
using a remote server with your ISP or
Web host, you'll need an FTP (File Transfer
Protocol) program to send the script to
the server. There are plenty of FTP appli-
cations available; in Chapter 1, “Getting
Started with PHP,” I use the free FileZilla
(www. filezilla-project.org, Figurei.7)
for an example.

Finally, if you want to follow the examples
in Chapter 12, “Introduction to Databases;’
you need access to MySQL (www.mysql . com,
Figure i.8) or another database application.
MySQL is available in a free version that you
can install on your own computer.

This book assumes only a basic knowledge
of HTML, although the more comfortable
you are handling raw HTML code without
the aid of a Web-creation application such
as Dreamweaver, the easier the transition to
using PHP will be. Every programmer will
eventually turn to an HTML reference at
some time or other, regardless of how much
you know;, so I encourage you to keep a good
HTML book by your side. One such introduc-
tion to HTML coding is Elizabeth Castros
HTML for the World Wide Web with XHTML
and CSS: Visual QuickStart Guide (Peachpit
Press, 2002).

Previous programming experience is cer-
tainly not required. However, it may expedite
your learning, because you'll quickly see
numerous similarities between, for example,
Perl and PHP or JavaScript and PHP.

Croreeed fles | Fased mamfens | Suroeidal mamisen

Figure i.7 The FileZilla application can be used on
many different operating systems to move PHP
scripts and other files to a remote server.

LI WL The s i et wpm vt dalabass [=]

Figure i.8 MySQL’s Web site (at the time of this writing).

www.filezilla-project.org
www.mysql.com

Introduction

Script i.1 A sample PHP script, with line numbers and
bold emphasis on a specific section of code.

ece = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Hello, World!</title>
7 </head>
8 <body>
9 <?php print "Hello, World!"; ?>
10 </body>
11 </html>

What’s New in This Book?

I would consider this third edition to be a
relatively light revision of an already solid
book. When the second edition was writ-
ten, PHP was at version 4.x, with version

5 in development. Now version 5 is out
and version 6 is in development. The most
significant changes in PHP 5 affect more
advanced topics than are covered here.
The most significant changes in PHP 6 are
support for Unicode and the removal of
some features.

With that in mind, the first wave of altera-
tions in this edition are the removal of a
few topics that no longer apply to PHP

6. Second, Tupdated all the examples

to make use of Unicode and the UTF-8
encoding (if you don't know what this
means, see Chapter 1). Third, I tweaked
some of the examples mostly to satisfy my
own drive for perfection.

About This Book

This book attempts to convey the fundamen-
tals of programming with PHP while hinting
at some of the more advanced features you
may want to consider in the future, without
going into overwhelming detail. It uses the
following conventions to do so.

The step-by-step instructions indicate what
coding youTe to add to your scripts and
where. The specific text you should type is
printed in a unique type style to separate it
from the main body text. For example:

<?php print "Hello, World!"; 7>

The PHP code is also written as its own
complete script and is numbered by line for
reference (Script i.1). You shouldn't insert
these numbers yourself, because doing so will
render your work inoperable. I recommend
using a text editor that automatically displays
the line numbers for you—the numbers will
help when youre debugging your work. In the
scripts you'll sometimes see particular lines
highlighted in bold, in order to draw atten-
tion to new or relevant material.

Xix

009 SIH] Lnogy

ABoUT THIS Book

Introduction

Because of the nature of how PHP works, you ® O O Hello, Worldl
need to understand that there are essentially '
three views of every script: the PHP code (e.g.,
Scripti.1), the code that’s sent to the browser
(primarily HTML), and what the browser
displays to the end user. Where appropri-

Hello, World!

Figure i.9 This is a sample view
you’ll see of the browser window.

ate, sections of or all of the browser window For the purposes of this book, it
are revealed, showing the end result of the won’t make any difference which
exercise (Figure 1.9). Occasionally, you'll also Web browser or operating system

see an image displaying the HTML source you use.

that the browser received (Figure i.10). You
can normally access this view by choosing
View Source or View Page Source from the
appropriate Web browser menu. To sum-
marize, Figure i.10 displays the HTML the
browser receives, and Figure 1.9 demonstrates
how the browser interprets that HTML.
Using PHP, you'll create the HTML that’s sent
to the browser.

Because the column in this book is nar-
rower than the common text editor screen,
sometimes lines of PHP code printed in the
steps have to be broken where they would
not otherwise break in your editor. A small
gray arrow indicates when this kind of break
occurs. For example:

print "This is going to be a longer line
»of code.";

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional .dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<titlerHello, World!</title>

</head>

<body>

Hello, World!</body>

</html>

Figure i.10 By viewing the source code received by the Web browser, you can see the HTML created
by PHP and sent by the server.

Introduction

Which Book Is Right for You?

This is the third edition of my first book on
PHP. Like the original, it's written with the
beginner or nonprogrammer in mind. If
you have little or no programming experi-
ence, prefer a gentler pace, or like to learn
things in bite-sized pieces, this is the book
for you. Make no mistake: This book covers
what you need to know to begin develop
dynamic Web sites (while using practical
examples), but it does so without any in-
depth theory or advanced applications.

Conversely, if you pick up new technolo-
gies really quickly or already have some
experience developing Web sites, you may
find this to be too basic. In that case, you
should consider my PHP 6 and MySQL 5
for Dynamic Web Sites: Visual QuickPro
Guide instead (Peachpit Press, 2008).

It discusses SQL and MySQL in much
greater detail and goes through several
more complex examples, but it does so at
a quick jog.

You should continue to use one line in your
scripts, or else you'll encounter errors when
executing. (The gray arrow isn't used in
scripts that are numbered.)

While demonstrating new features and tech-
niques, I'll do my best to explain the why’s
and how’s of them as I go. Between reading
about and using a function, you should clearly
comprehend it. Should something remain
confusing, though, this book contains a num-
ber of references where you can find answers
to any questions (see Appendix B, “Resources
and Next Steps”). If youre confused by a
particular function or example, your best bet
will be to check the online PHP manual or
the book’s supporting Web site (and its user
support forum).

009 SIH] Lnogy

CompANION WEB SITE

Introduction

Companion Web Site

While youre reading this book, you may
also find it helpful to visit the PHP for the
World Wide Web: Visual QuickStart Guide,
3rd Edition Web site, located at www.
DMCinsights.com/phpvgs3/ (Figurei.1l).
There you'll find every script in this book
available in a downloadable form. (However,
I strongly encourage you to type the scripts
yourselfin order to become more familiar
with the structure and syntax of PHP.)

The site also includes a more detailed refer-
ence section with links to numerous useful
Web pages where you can continue learning
PHP. In addition, the site provides an errata
section listing any mistakes made in this text.

What many users find most helpful, though,
is the book’s supporting forum, found
through the Web site or directly at www.
DMCInsights.com/phorum/list.php?23
(Figure i.12). Using the forum, you can:

¢ Find answers to problems you'e having

Receive advice on how to approach an
idea you have

Get debugging help from other readers

See how changes in the technologies have
affected the examples in the book

¢ Learn what other people are doing
with PHP

¢ Seeafaster reply from me than if you send
me a direct email

L] e e i i 1 =

Tl e Tie i G | Dmrinacs | Dra | o

About PHP Programming for the World Wide Wab:
Visual QuickStart Guide (3rd Edition)

Bl 7 P T W Vet Vo o S Dont, e by Ly -.I’
Ui s putt by P Prvw, Tow bk s s paiarad | oy
| bt B0, w7004, st B ot

| e, o w2 T O . e g T e
1 L. s e 3 P kB

Currently the site consists of:

e Cormets
T o bk e

Figure i.11 The book’s associated Web site.

g

0o = L 2 3 .
Wekcome. Lary A Lim.Oul & Cormnl Gt Foran 8

Digital Media and Communications Insights, Inc.

e * (P Qi G U Lot

PHP: Visual QuickStart Guide (3rd Edition) - ":.'_:'!?‘
et et of e
Do, e -
W hem S % b Fonam fese O 33 Page 161 Pagen: 1
Subet [Laat st arerts
Pagetof1 Pages:

Figure i.12 If you need more assistance, use the
book’s supporting forum, where readers and | post
problems and solutions.

www.DMCinsights.com/phpvqs3/
www.DMCinsights.com/phpvqs3/
www.DMCInsights.com/phorum/list.php?23
www.DMCInsights.com/phorum/list.php?23

Introduction

How to Ask Questions
the Smart Way

Whether youTe posting a message to the
book’s supporting forum, sending me an
email, or asking a question in a news-
group, knowing how to most effectively
ask a question improves the quality of
the response you'll receive as well as the
speed with which you'll get your answer.
To receive the best answer in the shortest
amount of time, follow these steps:

1. Search the Internet, read the
manuals, and browse any applicable
documentation.

2. Askyour question in the most appro-
priate forum (newsgroup, mailing list,
and so on).

3. Use aclear and concise subject.

4. Describe your problem in detail, show
any relevant code, say what went
wrong, indicate what version of PHP
you're using, and state what operating
system youre running,

Questions, comments, or
suggestions?

If you have a PHP-specific question, there

are newsgroups, mailing lists, and question-
and-answer sections available on PHP-
related Web sites for you to turn to. These

are discussed in more detail in Appendix B.
Browsing through these references or search-
ing the Internet will almost always provide
you with the fastest answer.

You can also direct your questions, com-
ments, and suggestions to me. You'll get the
fastest reply using the book’s corresponding
forum (I always answer those questions first).
If youd rather email me, my contact informa-
tion is available on the Web site. I do try to
answer every email I receive, but it will prob-
ably take a couple of weeks (whereas you'll
likely get a reply in the forum within a couple
of days).

For more tips and an enlightening read,
see Eric Steven Raymond’s “How to Ask
Questions the Smart Way™ at www. catb.
org/~esr/faqs/smart-questions.html.
The 10 minutes you spend on it will save
you hours in the future. Those people who
will answer your questions, like myself,
will be most appreciative!

311§ 93\ NOINVAWO)

www.catb.org/~esr/faqs/smart-questions.html
www.catb.org/~esr/faqs/smart-questions.html

This page intentionally left blank

GETTING

STARTED WITH PHP

When youTe learning any new programming
language, you should always begin with

an understanding of the basic syntax, and
that’s what I'll introduce in this chapter. I'll
primarily discuss the fundamentals, but I'll
also cover some recommended programming
techniques that will improve your work in
thelong run.

If you've never programmed before, a focused
reading of this chapter will start you on the
right track. If you have some programming
experience, you'll be able to breeze through
this section, gaining a reference for the book’s
remaining material in the meantime. By the
end of this chapter you will have successfully
written and executed your first PHP scripts
and be on your way to developing dynamic
Web applications.

New in this edition are two topics. The first

is a brief introduction to character encoding,
which is more important thanks to changes
in PHP 6. The final section of the chapteris a
quick introduction to some basic debugging
techniques to keep in mind as you work your
way through the rest of the book.

dHd HL1IM @3LyVv1ig 9NILLID

BAasic XHTML SYNTAX

Chapter 1

Basic XHTML Syntax

As you should know already, all Web pages
are made using HTML (Hypertext Markup
Language). Every Web browser, be it
Microsoft’s Internet Explorer, Apples Safari,
or Mozilla's Firefox, turns HTML code into
the stylized Web page seen by the user. In
this book, I'm using a slight variant of HTML
called XHTML, so I want to give it special
mention up front.

The World Wide Web Consortium (W3C)—
the group responsible for defining HTML and
other protocols—created XHTML as a transi-
tion between HTML and XML (Extensible
Markup Language). XHTML is almost exactly
like HTML, with the following differences:

¢ All tags are written in lowercase.

¢ Nested tags must be well formed.
This rule isn't as complicated as it
sounds. It means that you can't write
<div><p>text</div></p>;instead you
would use <div><p>text</p></div>.

¢ All tag attributes must be quoted.
In HTML, you might write <table
border=2>, but in XHTML, you must
use <table border="2">.

¢ Alltags must be closed.
This rule is the most confusing for
most people. Many HTML tags have
both an open and a close, like <div
class="someclass">text</div>.
However, a few don’t have implicit closing
tags. These include <hr>,
, , and
<input>. To make these valid XHTML
tags, you need to close them by adding a
space and a slash at the end, like this:

<hr />

<img src="image.jpg" width="100"
height="42" />

<input type="text" name="age"
size="3" />

Getting Started with PHP

[Insert XML Declaration
™ Insert DOCTYPE [XHTML 1.0 Transitional]

W HTML W Head V! Body
] Give BBEdit Credit

Title: iWEI:ome to this Page!]

Lang: m 8 Charset: |utf-8 | @

Base: | |

Meta: |

Link: | !

Web Site: [Untitled Site 2)

Template: [Default H

ECreale New Document

Can) 06

Figure 1.1 BBEdit and most other Web development
applications will create the basics of an XHTML
document for you.

As afinal note, CSS (Cascading Style Sheets)
is the recommended way of formatting
HTML and XHTML documents. You can do
so within style tags:

<style type="text/css">
.error { color: red; }
</style>

Or inline:
<p style="color: red;">text</p>

As with the subjects of HTML and XHTML,
this book does not (nor cannot) cover CSS in
any detail, but you'll only encounter a smat-
tering of CSS in these pages and for the most
basic and obvious reasons. In other words,
you shouldn't find any of the CSS code to be
that complex or puzzling,

Before getting into the syntax of PHP, let’s cre-
ate one simple but valid XHTML document
that will act as a template for almost all of
this book’s examples.

To create an XHTML page:

1. Open your text editor or IDE.
You can use pretty much any applica-
tion to create HTML, XHTML, and
PHP pages. Popular choices include:
Adobe’s Dreamweaver (www. adobe . com),
which runs on Windows and Mac OS X;
EditPlus (www.editplus.com)and
Crimson Editor (www. crimsoneditor. com)
for Windows; and Bare Bones BBEdit
(www.barebones. com) or MacroMates’
TextMate (www . macromates . com) for Mac.

2. Choose File > New to create anew,
blank document.
Some text editors allow you to start by
creating a new document of a certain
type—for example, a new XHTML file
(Figure 1.1). If your application has this
option, feel free to use it.

continues on next page

3

XVLNAS TWLHX 2Isvg

www.adobe.com
www.editplus.com
www.crimsoneditor.com
www.barebones.com
www.macromates.com

BAasic XHTML SYNTAX

Chapter 1

3.

Start with the XHTML header lines
(Script 1.1):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
A valid XHTML document begins with
these lines. They tell the Web browser
what type of document to expect. For this
template, and in this book, I'll be creat-
ing XHTML 1.0 Transitional pages. This
means I'll be adhering to XHTML 1.0
standards. The Transitional part means
I'll be forgiven for using deprecated (no
longer recommended) tags (as opposed
to Strict mode, which isn't forgiving).

Create the head section of the page:
<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />
<title>Welcome to this Page!
</title>
</head>
The head of an XHTML page includes the
content-type meta tag (required for valid
XHTML) and the title tags. The sidebar
“Understanding Encoding” discusses
what the charset part of the tag means.
JavaScript and CSS references can also be
placed here.

Script 1.1 This sample document shows the basics of

XHTML code.

eee =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
: 1.0 Transitional//EN"

|2 "http://www.w3.org/TR/xhtml1/DTD/
: xhtml1l-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="content-type"

| content="text/html; charset=utf-8" />
:6 <title>Welcome to this Page!</title>
:7 </head>

| 8 <body>

:9 <h1>This is a basic XHTML page!</h1>
I10

11 <p>Even with <span style="font-size:

150%; ">some decoration, it's
still not very exciting.</p>
12 </body>
13 </html>

Getting Started with PHP

Understanding Encoding

Encoding is a huge subject, but what

you most need to understand is this:

the encoding you use in a file dictates

what characters can be represented (and
therefore, what languages can be used). To
choose an encoding, you must first con-
firm that your text editor or IDE can save
documents using that encoding. Some
applications let you set the encoding in
the preferences or options area; others set
the encoding when you save the file.

To indicate to the Web browser the encod-
ing being used, there's the corresponding
meta tag:

<meta http-equiv="content-type"
content="text/html;
charset=iso0-8859-1" />

The charset=iso-8859-1 part says that
ISO-8859-1 encoding is being used (and
this value needs to match the encoding
actually used in the editor). This encod-
ing is the most common for Western
European and Latin-derived languages.
If a Web page contains characters from
other languages, you'll need to choose
a different encoding, which is where
Unicode comes in.

Unicode is way of reliably representing
every symbol in every alphabet. Version 5
of Unicode—the current version at the
time of this writing—supports over 99,000
characters! The most commonly used
Unicode encoding is called UTF-8. If you
want to create a multilingual Web page,
UTEF-8 is the way to go. I'll be using it in
this book’s examples (although you don't
have to).

5. Create the body section:

<body>
<h1>This is a basic XHTML page!</hl>

<p>Even with <span style="font-size:
150%;">some decoration,
it's still not very exciting.</p>
</body>
The page’s content—what is seen in the
Web browser—goes between opening and
closing body tags. Per XHTML rules, the
break tag (
)includes a space before
the slash that closes it. All the other tags
are similar to their standard HTML coun-
terparts except that theyre in lowercase.
Some CSS is used to increase the font size
for the word some.

. Type </html> to complete the HTML page.
. Choose File > Save As. In the dialog box

that appears, choose Text Only (or ASCII)
for the format, if youe given the option.
XHTML and PHP documents are just
plain text files (unlike, for example, a
Microsoft Word document, which is
stored in a proprietary format). You may
also need to indicate the encoding when
you save the file (again, see the sidebar).

. Navigate to the location where you wish

to save the script.

You can place this script anywhere youd
like on your computer, although using one
dedicated folder for every script in this
book, perhaps with subfolders for each
chapter, makes sense.

continues on next page

XVLNAS TWLHX 2Isvg

BAasic XHTML SYNTAX

Chapter 1

9.

10.

Save the file as welcome.html.

Even though youre coding with XHTML,
the page will still use the standard . html
or .htm extension.

Test the page by viewing it in your Web
browser (Figure 1.2).

Unlike with PHP scripts (as you'll soon
discover), you can test your XHTML and
HTML pages by opening them directly
in your Web browser.

v Tips

To find an HTML and PHP editor or IDE,
head to www.DMCInsights.com/1inks/1.

I'll be using XHTML throughout the
book, but that doesn't mean you have to.
If youre more comfortable with HTML,
stick with what you know. It won't affect
the operability of your PHP scripts.

For more information on XHTML, XML,
and HTML, check out the W3C’s Web
page at waw.w3c.org or Elizabeth Castros
excellent book, HTML, XHTML, and CSS,
Sixth Edition: Visual QuickStart Guide
(Peachpit Press, 2006).

For many reasons, including sheer
convenience, I'll use the terms HTML
and XHTML interchangeably through-
out the book. In fact, you'll probably see
just HTML the majority of the time, but
understand that I mean XHTML as well.

The standards committees are currently
working on the next versions of HTML
and XHMTL, called X/HTML 5 and
XHTML 2. Finalizing and adopting stan-
dards like these moves at a glacial pace,
so it could be years before either is fully
implemented.

800

Welcome to this Page!

=

This is a basic XHTML page!

Even with SOITE decoration, it's still not very exciting.

Figure 1.2 The XHTML document as interpreted by the

Web browser.

www.DMCInsights.com/links/1
www.w3c.org

Getting Started with PHP

Basic PHP Syntax

Now that you've seen how the HTML will
be handled in this book, it’s time to begin
PHP scripting. To create your first PHP page,
you'll start exactly as you would if you were
creating an HTML document from scratch.
Understanding the reason for this is vitally
important: PHP is a server-side technology,
which means it doesn't run on the client,
which is what a Web browser is. But a Web
browser does understand HTML (and
JavaScript and CSS), so PHP will be used

to generate the HTML that’s run in a Web
browser (refer back to Figure i.4 for a visual
representation of this relationship).

There are three main differences between

a standard HTML document and a PHP
document. First, PHP scripts should be saved
with the . php file extension (for example,
index.php). Second, you place PHP code
within <?php and ?> tags:

<body><h1>This is HTML.</hl>
<?php PHP code! 7>
<p>More HTML</p>

The PHP tags indicate the parts of the page
to be run through the PHP executable. This
leads me to the third major difference: PHP
scripts must be run on a PHP-enabled Web
server (whereas HTML pages can be viewed
on any computer). This also means that PHP
scripts must always be run through a URL (i.e.,
http://something/page.php).

To make this first PHP script do something
without too much programming fuss, you'll
use the phpinfo() function. This function,
when called, sends a table of information to
the Web browser. That table lists the specif-
ics of the PHP installation on that particu-
lar server. It's a great way to test your PHP
installation, and it has a high “bang for your
buck” quality.

XVLNAS dHd JIsvg

http://something/page.php

BAsic PHP SYNTAX

Chapter 1

To create a new PHP script on your
computer:

1.

Create anew HTML document in your
text editor or IDE (Script 1.2):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />
<title>First PHP Script</title>
</head>
<body>
</body>
</html>
This particular code is largely irrelevant
to the overall point of creating a PHP
page; but, for consistency’s sake, this is
the same template as the basic XHTML
example (Script 1.1).

Create some blank lines between the
opening and closing body tags by
pressing Return.

Type <?php on its own line, just after the
opening body tag.
This initial PHP tag tells the server that
the following code is PHP and should be
handled as such.

Add the following on the next line:
phpinfo();
I'll explain the syntax in detail later, but in

short, this is just a call to an existing PHP
function named phpinfo.

Script 1.2 This first PHP script takes a typical HTML
page, adds the PHP tags, and makes use of a PHP

function.
eee = Saipt
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>First PHP Script</title>
7 </head>
8 <body>
9 <?php
10 phpinfo();
1 2>
12 </body>
13 </html>

Getting Started with PHP

5. Type ?> on its own line, just before the
closing body tag.
The closing PHP tag tells the server that
the PHP section of the script is over. Any
text outside of the PHP tags is immedi-
ately sent to the Web browser as HTML
and isn't treated as PHP code.

6. Save the script as phpinfo.php.
Not to overstate the point, but remember
that PHP scripts must use a valid file
extension. Most likely you'll have no prob-
lems if you save your files as filename . php.

v Tips

B Just as afile's extension on your computer
tells the operating system what appli-
cation to open the file in, a Web page’s
extension tells the server how to process
the file: file.php goes through the PHP
module, file.aspx is processed as ASP.
NET, and file.html is a static HTML
document (normally). This is determined
by the Web server application’s settings.

B Ifyoure developing PHP scripts for a
hosted Web site, check with your hosting
company to learn which file extensions
you can use for PHP documents. In this
book you'll see . php, the most common
extension.

B Youll occasionally see PHP’s short tags—
simply <? and ?>—used in other peoples
scripts, although it’s best to stick with the
formal tags as I do in this book.

B Youll find it handy to have a copy of the
phpinfo.php file around. You can use it to
check the PHP capabilities of a new server
or see what features are supported, such
as databases, image creation, and so on.

XVLNAS dHd JIsvg

TESTING YOUR SCRIPT

Chapter 1

Testing Your Script

Unlike HTML, which can be tested on your own
computer, PHP scripts needs to be run from

a PHP-enabled server in order for you to see
what the output will look like. Fortunately,
PHP is open-source software (meaning, in part,
that it's free) and is generally easy to install.

If you need to do so, follow the directions in
Appendix A, “Installation and Configuration.”

PHP is run through a Web server applica-
tion, like Apache (http://httpd.apache.
org), Abyss (www.aprelium.com), or Internet
Information Server (IIS, www. iis.net). If you
have installed one of these on your personal
computer and enabled support for PHP, then
you can test your PHP scripts by saving them
in, or moving them to, the Web document
root. This is normally

& ~/Sites for Mac OS X users (where ~
stands for your home directory)

@ AbyssDir/htdocs on any operating
system, where AbyssDir is the directory in
which the Abyss Web Server was installed

& C:\Inetpub\wwwroot for Windows users
running IIS

If youe not running PHP on your own com-
puter, you'll need to transfer your PHP scripts
to the PHP-enabled server using FTP (File
Transfer Protocol). The Web hosting com-
pany or server’s administrator will provide
you with FTP access, which you'll use with
an FTP client. There are many available; in
this next sequence of steps, I'll use the free
FileZilla (http://filezilla-project.org/),
which runs on many operating systems.

10

www.aprelium.com
www.iis.net
http://httpd.apache.org
http://httpd.apache.org
http://filezilla-project.org/

Getting Started with PHP

To FTP your script to the server:
1. Open your FTP application.

2. Inthe application’s connect window,
enter the information provided by your
Web host (Figure 1.3).

FTP access requires a host name, user-
name, and password.

continues on next page

B
4 files and 4 directories. Total size: 50,171 bytes

Local site: Isters.r‘IarryuIlman,fDeskmp,' |B Remote site: . @
» [3 .netbeans-registration
3 .ssh
» [3 .subversion
» [3 Documents
» [3 Downloads
» 3 Library
» [Movies b4
\F\Iename | Filesize | Filetype |Last modified | || |F\\aname | Filesize | Filetype Last modified |Perm\ssinns |C
=
3 0321245652... Directory 09/15/2008 Z3:.
3 0321245652... Directory 09/10/2008 14.. <Not connected to any server>
3 Hide Directory 10/08/2008 15:.
(3 ¥ideos Directory 0Z/06/2008 18
.D3_store 24,580 File 10/08/2008 17..
.localized 0 File 03/11/2008 22:... |a

——————— @ 4l
Empty directary

‘Sar\ferf Local file | Direction |Rgmute file

Size |Pnur\ty |Status |

—[Queued files I Failed transfers J Successful transfers

LL/

Figure 1.3 The FileZilla application’s main window as it appears on the Macintosh.

11

1dIRIDS ANOA ONILST]

TESTING YOUR SCRIPT

Chapter 1

3.

Click Quickconnect (or your FTP client’s
equivalent).

If you've provided the correct informa-
tion, you should be able to connect. If not,
you'll see error messages at the top of the
FileZilla window (Figure 1.4).

Navigate to the proper directory for
your Web pages (for example, www/ or
htdocs/).

The FTP application won't necessarily
drop you off in the appropriate directory.
You may need to do some navigation

to get to the Web document root. This
directory is the location on the server

to which a URL points (for example,
www . dmcinsights. com).

‘ Host: I:Im(insights.mm Username: !someuser

l Password:

Response:
Command: USER someuser

Response: 331 Password required for someuser
Command: PASS =**=*+*

220 ProFTPD 1.3.1 Server (ProFTPD) [20?,58,187.?Eﬁ

Response: 530 Login incorrect. 4

Errar: Could not connect to server b
Local site: [f 18 Remote site: @
=i

Filename | Filesize IFHE[YDE |Last muodified | || Filename Filesize |F|\Etype |Last modified IPermlssluns |C

3 Spotlight-v'1 Directary 11152007 10

T3 Trashes Directory 11152007 11..

T3 fsewentsd Directary 10/09/2008 14 <Not connected to any server>

3 ol Directory 09j24/2007 03,

3 Applications Directary 10/08/2008 22 B

3 i«ir

& files and 25 directories. Total size: 21,503,352 bytes

Empty directory.

| server / Local file Direction | Remote file

Size | Priority | status |

—[Queued files l Failed transfers] Successful transfers |

Quele: empty

[T

Figure 1.4 The reported error says that the login information is incorrect.

12

www.dmcinsights.com

Getting Started with PHP

In FileZilla, the right-hand column
represents the files and directories on the
server; the left-hand column represents
the files and directories on your computer
(Figure 1.5).

5. Upload your script—phpinfo.php—to
the server.

To do this in FileZilla, you just need

to drag the file from the left column—
your computer—to the right column—
the server.

Host: ‘[ﬁp.dmcinsights.d Username: {someuser Password: essesse
Response: 226 Quotas off
Status: Calculating timezone offset of server...
Command: MDTM contact.php
Response: 213 20080420134246
Status: Timezone offsets: Server: -14400 seconds. Local: -14400 seconds. Difference: 0 seconds. .
Status: Directory listing successful |54
Local site: |jU§Ers,’larryullman/[)eskmp.' |B Remote site: L’hnpdn(s |8
» 3 .nbi A=y
» [3 .netbeans £21 anon_frp
[3 .netbeans-derby cgi-bin
» (3 .netbeans-registration £ conf
£3 ssh (A error_docs
» (3 .subversion L
» [Desktop . httpsdocs |a
n B8 Anrimanse b4 2 includes L"
‘Fllename | Filesize | Filetype ILast muodified I ‘ ‘F\\ename | Filesize I Filetype ILast modified |Perm\ss|ons I(
G . n & .
3 0321245652 Directary 09/15/2008 23 3 RectsG Directary 0B/23 /2008 Arwxr-xr-x
3 0321245652, Directory 09/10/2008 14... 3 air Directory 0571872008, drwxr-xr-x
£3 Hide Directary 10/08/2008 15... w03 ajax Directory 02/08f2008 drwxr-xr-x
A Y
3 Videos Directory OB/06/2008 18.. [3 archives Directory 08062008, dr’WKr—xr’—){_E
. B L N e —— AL
7 files and 4 directories. Total size: 26,250,715 bytes 10 files and 26 directaries. Total size: 131,865 bytes
| server ¢ Local file | Direction | Remore file | size | Priority | Status | |
-lQueued files | Failed transfers ‘ Successful transfers. ‘

$p Queue: empty *9

Figure 1.5 I've successfully connected to the remote server and navigated into the httpdocs directory
(aka the Web document root).

13

1dIRIDS ANOA ONILST]

TESTING YOUR SCRIPT

Chapter 1

To test your script in the browser:

1. Open your favorite Web browser.

For the most part, PHP doesn't behave
differently on different browsers (because
PHP runs on the server), so use whichever
browser you prefer. In this book, you'll

see that I primarily use Firefox (on both
Windows and Mac OS X) and Safari (on
Mac OS X).

2. Inthe browser’s address bar, enter the
URL of the site where your script has
been saved.

In my case, this is www.DMCinsights.com,
but your URL will certainly be different.

If youre running PHP on your own com-
puter, the URL is http://localhost
(Windows); or http://localhost/~username
(Mac OS X), where you should replace
username with your actual username.

3. Add /phpinfo.php to the URL.

4, Press Return to load the URL.

The page should load in your browser
window (Figure 1.6). If you see the PHP
code (Figure 1.7) or a blank page, it
most likely means that PHP has not been
enabled on the server or youre using an
unrecognized file extension.

} phpinda] - Mozl Firefaz

B[S e Mgy feckeards [k beln
] | hetpe o shost coiironts.pho i
[swstem [budd 2600
U Date Jul 786 7000 82.04 51
[MirvCs fsusd Coe 0D
I3
T
Ll 0 astC Ol
| Du ectoly $pport | smabied
File tpbapan) | C WDV
T
A | 20070118
IS xtemsion. | peararie
Eatemrsion 3007er8
|m
The et Satety. | enatied
Mormoty Mamages | et
|omers Al Righis Retaned I varsion 38
ol Supprart enabied
s | —— "'

Figure 1.6 If your script has been executed correctly,
your browser should look like this (woohoo!).

® O O http://localhost/test.php

<?php
phpinfo();
FEd

Cocument: Dane e A

Figure 1.7 If you see the raw PHP

or HTML code, then either PHP isn’t
installed correctly or the extension you
used (.php) isn’t treated as a PHP file
by the server.

14

www.DMCinsights.com

Getting Started with PHP

v Tips

Some text editors and IDEs have built-in
FTP capability, allowing you to save your
scripts directly to the server. Some, like
Dreamweaver and TextMate, can run PHP
scripts without leaving the application
atall.

It’s very important to remember that you
can't open a PHP file directly in your Web
browser as you would open HTML pages
or files in other applications. PHP scripts
must be processed by the Web server,
which means you must access them via a
URL (an address that starts with http://).

Even if you aren’t a seasoned computer
professional, you should consider install-
ing PHP on your computer. Doing so isn't
too difficult, and PHP is free. Again, see
Appendix A for directions.

Technically speaking, you don't need to
add any HTML to a phpinfo() script. If
you don't, the phpinfo() function will
still generate a complete HTML page.

15

1d1¥)G ¥NOA 9NILSI]

SENDING TEXT TO THE BROWSER

Chapter 1

Sending Text to the
Browser

PHP wouldn't be very useful if all you could
do was see that it works. You'll use PHP
most frequently to send information to the
browser in the form of plain text and HTML
tags. To do so, use the print() function:

print("Hello, world!");

Functions in PHP are followed by paren-
theses in which arguments are passed to
the function. Here the argument is the text
you want printed. Because this argument is
a string of text, you must surround it with
quotation marks (in comparison, numbers
are not quoted).

Also notice that the line is terminated with a
semicolon (;). Every statement in PHP code
must end with a semicolon, and forgetting
this requirement is a common cause of
errors. A statement in PHP is an executable
line of code, like

print("something");
or
phpinfo();

Conversely, comment lines, PHP tags, control
structures (conditionals, loops, and so on),
and certain other constructs I'll discuss in
this book don’t merit a semicolon.

Before using this new bit of information in
this next example, I have an early clarifica-
tion to make: print() is not really a function,
it's a language construct. What this means

is that it can be, and often is, called without
the parentheses:

print "something";

But you do still need the semicolon.

16

Getting Started with PHP

Script 1.3 By putting the print statement between the
PHP tags, the server will dynamically send the Hello,
world! greeting to the browser.

eoe 21 Script
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>Hello, World!</title>
7 </head>
8 <body>
9 <p>The following was created by PHP:
10 <?php
11 print "Hello, world!";
12 7>
13 </p>
14 </body>
15 </html>

To print a simple message:

1. Begin a new HTML document in your

text editor or IDE (Script 1.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Hello, World!</title>
</head>
<body>
<p>The following was created by PHP:

The last line will be used to distinguish
between the hard-coded HTML and the
PHP-generated HTML.

. Type <?php to create the initial PHP tag.
. Add:

print "Hello, world!";

Printing the phrase Hello, world!is the
first step most programming references
teach. Even though it’s a trivial reason to
use PHP, you'e not really a programmer
until you've made at least one Hello, world!
application.

. Close the PHP section and the HTML

page:
7>

</p>
</body>
</html>

continues on next page

17

YISMOUYG FHL Ol 1X3] 9ONIAN3IS

SENDING TEXT TO THE BROWSER

Chapter 1

5.

v

Save your file as hello.php, place it on
your PHP-enabled server, and test it in
your browser (Figure 1.8).

If youre running PHP on your own com-
puter, remember that you can save the
file to the proper directory and access the
script via http://localhost/.

If you see an error or a blank page instead
of the results shown in the figure, see the
debugging section at the end of this chapter.

Tips

PHP is case-insensitive when it comes
to calling functions like phpinfo() and
print():print(),Print(), and PRINT()
net the same results. Later in the book
(for example, in Chapter 2, “Variables”)
you'll see examples where case makes a
crucial difference.

You can use other functions to send text
to the browser, including echo() and
printf(), but in this book, I'll primarily
use print().

You can—and commonly will—use the
print() function over multiple lines: just
follow the closing quotation mark with a
semicolon:

print "This is a longer

sentence of text.";

800 Hello, World! =

d i http: f /localhost/~larryullman/hello.php ﬁvh

The following was created by PHP: Hello, world!

Figure 1.8 A simple Hello, world! example: your first
foray into PHP programming.

18

Getting Started with PHP

PHP Functions in the Manual

The PHP manual—accessible online at www. php . net/manual—lists every function available

in the language, but using the manual takes a bit of know-how. The manual is organized with
general concepts (installation, syntax, variables) discussed first, and ends with the functions by
topic (MySQL, string functions, and so on). To quickly look up any function in the PHP manual,
go to www. php . net/functionname in your Web browser (for example, waw.php.net/print).

To understand how functions are described, look at the start of the print() function’s page:

print

(PHP 4, PHP 5)

print - Output a string
Description

int print (string $arg)
Outputs arg.

The first line is the function itself, followed by the versions of PHP in which it’s available. (As the
language grows, new functions are added that aren't usable in older versions.) Then there's a
textual description of the function along with the function’s basic usage. The usage is the most
important and confusing part.

In this example, the first value, int, says that the print() function returns an integer value
(specifically, print() returns 1 if it worked and @ if it didn't). Within the parentheses, string $arg
says that the function takes one required argument, which should be in the form of a string.

In comparison, the listing for the number_format() function (which formats a number to some
decimal places) looks like this:

string number_format (float $number [, int $decimals])

This function, which returns a string, takes a floating-point number as its first argument and an
optional integer as its second. Whenever you see the square brackets, that indicates optional

arguments, which must be listed last. Whenever a function takes multiple arguments, they are
separated by commas. Hence, this function can be called like so:

number_format(1.294);
number_format(1.294, 2);

If youre ever confused by a function or how it's properly used, check the PHP manual’s refer-
ence page for it.

19

YISMOUYG FHL Ol 1X3] 9ONIAN3IS

www.php.net/manual
www.php.net/print
www.php.net/functionname

SENDING HTML 1O THE BROWSER

Chapter 1

Script 1.4 With the print() function, you can send
HTML tags along with your text to the browser, where
the formatting will be applied.

Sending HTML

to the Browser

As those who first learned HTML quickly dis-
covered, viewing plain text in a Web browser
leaves alot to be desired. Indeed, HTML was
created to make plain text more appealing
and useful. Because HTML works by adding
tags to text, you can use PHP to send HTML
tags to the browser, along with other data:

print "Hello, world!";

There is one situation where you have to

be careful, though. HTML tags that require
quotation marks, like <a href="somepage.
php">1link, will cause problems when
printed by PHP, because the print() func-
tion uses quotation marks as well. The fix is
to escape the quotation marks by preceding
them with a backslash (\):

print "
An error occurred.";

By escaping each quotation mark within your
print() statement, you make PHP print the
mark itself instead of interpreting it as either
the beginning or end of the string to be printed.

To send HTML to the browser:

1. Open thehello.php script (Script 1.3) in
your text editor or IDE.

2. Edit the Hello, world!text online 11 by
adding HTML tags so that it reads as fol-
lows (Script 1.4):
print "<span style=\"font-weight:

bold;\">Hello, world!";
To make the PHP-generated part of the
message stand out, it'll be made bold
by applying some CSS. For this to work,
you need to escape the quotation marks
within the span tag so that it doesn’t
conflict with the print() statement’s
quotation mark.

808 = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>Hello, World!</title>
7 </head>
8 <body>
9 <p>The following was created by PHP:
10 <?php
11 print "<span style=\"font-weight:
bold;\">Hello, world!";

12 7>

13 </p>

14 </body>
15 </html>

20

Getting Started with PHP

800 Hello, World! =) 3.
= http: f /localhost/~larryullman/hello2.php ﬁ' v

The following was created by PHP: Hello, world!

Figure 1.9 The new version of the page (compare with
Figure 1.8), with a little more decoration and appeal.

4
n

Save the script as hello2.php, place it
on your PHP-enabled server, and run the
page in your browser (Figure 1.9).

. View the HTML page source to see

the code that was sent to the browser
(Figure 1.10).

How you do this depends upon the
browser: select View > Page Source

in Firefox, View > Source in Internet
Explorer, or View > View Source in Safari.
This is a step you'll want to be in the habit
of taking, particularly when problems
occur. Remember that PHP is primar-

ily used to generate HTML, sent to and
interpreted by the Web browser. Often,
confirming what was sent to the Web
browser (by viewing the source) will help
explain the problem youTe seeing in the
browser’s interpretation (or visible result).

Tips

Understanding the role of quotation
marks and how to escape problematic
characters is crucial to programming with

PHP. These topics will be covered in more
detail in the next two chapters.

The HTML you send to the Web browser
from PHP doesn’t need to be this simple.
You can create tables, JavaScript, and
much, much more.

Remember that any HTML outside of

the PHP tags will automatically go to the
browser. Within the PHP tags, print()
statements are used to send HTML to the
Web browser.

<!DOCTYPE html PUBLIC "=//W3C//DTD XHTML 1.0 Transitional//EN"

“http://www.w3.org/TR/xhtml1/DTD/xhtml]l-transitional.ded">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type" content="text/html; charset=utf-g" />
<title>Hello, World!</title>

</head>

<body>

<p>The following was created by PHP:

Hello, world!</p>

</body>

</html>

Figure 1.10 The
resulting HTML
source for hello2.
php (Script 1.4).

21

dIsmoug IHL OL JWLH ONIAN3S

UsING WHITE SPACE

Chapter 1

Using White Space

If you've ever hand-coded HTML or done
any programming, you've probably noticed
that judicious use of white space—blank
lines, tabs, and other extra spaces—makes
the code easier to write, read, and maintain.
Well-written scripts place blank lines between
sections of code, nest elements one tab-stop
in from their parent element, and generally
space out the page nicely. These techniques
are not just about aesthetics—they are a
trademark of professionally written code.

The content in this book focuses on three
areas of Web development: the PHP scripts
themselves, the data (HTML) that the PHP
scripts send to the Web browser, and how the
Web browser interprets or displays that data.
I'll briefly address the issue of white space in
each of these areas.

When youre programming in PHP, you
should understand that white space is gener-
ally (but not universally) ignored. Any blank
line (just one or several in a row) is irrelevant
to the end result. Likewise, tabs and spaces
are normally inconsequential to PHP. And as
PHP code is not visible in the Web browser
(unless there’s a problem with the server),
white space in your PHP files has no impact
on what the end user sees.

The spacing of HTML code shows up in the
HTML source of a Web page but has only a
minimal effect on what's viewed in the Web
browser. For example, all of the source code
in Figure 1.10 could be placed on one line
without changing the net effect. If you had to
find a problem in the HTML source, however,
you would not appreciate the long, single line
of HTML.

Finally, to adjust the spacing in the rendered
Web page—i.e., what the end user will see—
you'll use tables and CSS, plus paragraph, div,
and break tags, among others.

With all this in mind, let’s rewrite the preced-
ing script.

22

Getting Started with PHP

Script 1.5 The script now has three different kinds of
white space: blank lines in the PHP, a newline in the
HTML source (created by \n), and added space in the
browser result (thanks to the
).

eee 51 Seripe
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>Hello, World!</title>
7 </head>
8 <body>
9 <p>The following was created by PHP:

10 <?php
11
12 print "<span style=\"font-weight:
bold;\">Hello,
13 world!\n";
14
15 7>
16 </p>
17 </body>
18 </html>

To affect PHP and HTML spacing:

1.

Open hello2.php (Script 1.4) in your
text editor.

Insert new lines before and after the PHP
print() function by pressing Return at
the appropriate places (Script 1.5).

The new lines within the PHP serve only
to add focus and clarity to the script.

. Make the print() statement extend over

two lines by pressing Return with your
cursor between Hello, and world!.

AsIstated earlier, you can print text over
multiple lines because the end of the
string being printed is marked by the clos-
ing quotation mark.

. At the end ofline 9, just before the open-

ing PHP tag, add an HTML break:

<p>The following was created by
PHP:

The
 tag will make the next line of
text appear on a subsequent line in the
rendered HTML page (if you don't quite
follow, it should be clear after you run
the example).

continues on next page

23

30vdS ILIHM ONISN

UsING WHITE SPACE

Chapter 1

5. Attheend ofthe print() command
(now on line 13), add \n within the
quotation marks.

The \n character combination sends a

command to the Web browser to start

anew line in the HTML source. Think

of it as the equivalent of pressing the

Return key.

The line should now read

print "<span style=\"font-weight:
»bold;\">Hello,

world!\n";

6. Save the script as hello3.php, place it on
your PHP-enabled server, and run it in
your browser (Figure 1.11).

The break tag, added to the HTML source
code, forces the Hello, world! message to
go on the next line. The added blank lines
in the PHP code have no effect on the vis-
ible result. Having PHP print the HTML
over two lines, and also print a newline
character (\n), only impacts the HTML
source (Figure 1.12).

®00 Hello, World!
([} (hup://localhost/~larryullman/hello3.php 17 ¥)

The following was created by PHP:
Hello, world!

Figure 1.11 The blank lines have not affected the
resulting Web page, but the
 tag added
some spacing.

<[DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml]l-transitional .dtd">
<html xmlns="http://www.w3.org/199%9/xhtml" xml:lang="en" lang="en">
<head>

<title>Hello, World!</title>
</head>
<body>
<p>The following was created by PHP:

Hello,
world!
</p>
</body>
</html>

<meta http-equiv="content-type" content="text/html; charset=utf-g8" />

e ——— |
Figure 1.12 The \n in the print statement separates the Hello, world! line from the other HTML

tags (note the placement of the closing paragraph tag here and in Figure 1.10).

24

Getting Started with PHP

Script 1.6 By putting either // or # in front of a single
line of code, that line will no longer be processed
by PHP.

200 2 seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>Hello, World!</title>
7 </head>
8 <body>
9 <p>The following was created by PHP:

10 <?php
1 /*

12 * Filename: hello4.php

13 * Book reference: Script 1.6

14 * (Created by: Larry Ullman

15 %/

16

17 //print "<span style=\"font-weight:
bold;\">Hello, world!\n";

18

19 7>

20 <!-- This is an HTML comment. -->
21 </p>

22 </body>

23 </html>

Adding Comments
to Scripts

Comments are integral to programming not
because they do anything but because they
help you remember why you did something.
The computer ignores these comments when
it processes the script. Furthermore, PHP
comments are never sent to the Web browser
and therefore remain your secret.

PHP supports three ways of adding com-
ments. You can comment out one line of code
by putting either // or # at the beginning of
the line you want ignored. For example:

// This is a comment.

You can also use // or # to begin a comment
at the end of a PHP line, like so:

print "Hello"; // Just a greeting.

You can comment out multiple lines by
using /* to begin the comment and */ to
conclude it:

/* This is a
multi-line comment. */

To add comments to a script:

1. Open the hello3.php (Script 1.5) in your
text editor.

2. After the initial PHP tag, add some com-
ments to your script (Script 1.6):

/*

*Filename: hello4.php
*Book reference: Script 1.6
*Created by: Larry Ullman
*/

continues on next page

25

S1dI¥DS OL SLNIWWO) 9NIaay

ADDING COMMENTS TO SCRIPTS

Chapter 1

This is just a sample of the kind of com-
ments you can write. I highly recommend
that you document what the script does,
what information it relies upon, who
created it, when you created it, and so
forth. Stylistically, such comments are
often placed at the top of a script (as the
first thing within the PHP section, that
is), using formatting like this. The extra
asterisks aren’t required; they just draw
attention to the comments.

3. Online 17, before the print() statement,

type//.

By preceding the print() statement with
two slashes, you comment out the func-
tion, meaning it will never be executed.

4. Delete the Return between lines 17 and 18
so that the print() function is entirely on
one line.

Line 17 should now read

//print "<span style=\"font-weight:
bold;\">Hello, world!\n";

Because the print() statement flows over

two lines, you need to either precede each

line with // or place it back on one line

as youve done here. If you don't do one of

those two things, you'll get a parse error

when you run the script (Figure 1.13).

5. After the closing PHP tag (line 19), add an
HTML comment.

<!-- This is an HTML comment. -->

This line of code just helps you to compre-
hend the different comments and where
they appear. This comment will only
appear within the HTML source code.

6. Save the script as hello4.php, place it
on your PHP-enabled server, and run the
page in your Web browser (Figure 1.14).

7. View the source of the page to see the
HTML comment (Figure 1.15).

©) Mozilla Firefox Q|X|

File Edt Wew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:8000,1’he||04.php {_\j v|

Parse error: syntax error, unexpected =" i C:'\Program
Files'Abyss Web Server'htdocs\hellod.php on line 18

Figure 1.13 Parse errors are frequently caused by an
imbalance of quotation marks or parentheses, or by
omitting a semicolon.

S(=1E9

3 Hello, World! - Mozilla Firefox
File Edit Miew History Bookmarks Tools Help

I: |j |http:,l’,l’localhost:8000,1’he||04.php 7 -

The following was created by PHP:

Figure 1.14 With the print statement commented
out, the page looks just as it would if the
print() function weren’t there.

26

Getting Started with PHP

v Tips

B You can comment out just one line
of code or several using the /* and */
method. With // or #, you can negate
only one line at a time.

B Different programmers prefer to com-
ment code in different ways. The impor-
tant thing is to find a system that works
for you and stick to it. Those who also do
JavaScript programming will most likely
use // and /* */because these are the
same in both languages. Perl and Ruby
programmers are more familiar with
the # method.

B Note that you can't use HTML comment
characters (<! -- and -->) within PHP
to comment out code. You could have
PHP print those tags to the browser,
but in that case youd create a comment
that appeared in the HTML source code
on the client’'s computer (but not in the
browser window). PHP comments never
make it as far as a user’'s computer.

B Despite my strong belief that you can't
over-comment your scripts, the scripts in
this book aren't as documented as they
should be, in order to save space. But I will
begin documenting the script name and
number, for cross-reference purposes.

©) Source of: hitp://localhost:8000/hellod. php - Mozilla Firefox
File Edit Yiew Help

<!DOCTYPE Ltml PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"hitp: S www. w3, org/ TR/ xhtmd 1/0TD xhtml1-transitional . did™>

<html xmlns="http://www.w3.org/ 1999/ xhtwl"” xml:lang="en" lang="en":>

<head:>
<meta http-equiv="content-type” content="text/html; charset=ucf-3" j>
<titlerHello, World!</titlex

</head>

<hody>

<p>The following was created by PHP: <hr jf»

<!-- This is an HIML comment. -->

</p>

</hody>

</html>

Figure 1.15 HTML comments don’t appear in the Web browser but are in the HTML source.

PHP comments remain in the PHP script on the server.

27

S1dI¥DS OL SLNIWWO) 9NIaay

BAsic DEBUGGING STEPS

Chapter 1

Basic Debugging Steps

Debugging is by no means a simple concept to
grasp, and unfortunately, it'’s one that is only
truly mastered by doing. The next 50 pages
could be dedicated to the subject and youd
still only be able to pick up a fraction of the
debugging skills that you'll eventually acquire.

The reason I introduce debugging in this
somewhat harrowing way is that it's impor-
tant not to enter into programming with
delusions. Sometimes code won't work as
expected, you'll inevitably create careless
errors, and some days you'll want to pull
your hair out, even when using a compara-
tively user-friendly language such as PHP.
I've been coding in PHP since 1999, and
occasionally I still get stuck in the pro-
gramming muck. But debuggingis a very
important skill to have, and one that you will
eventually pick up out of necessity and expe-
rience. As you begin your PHP programming
adventure, I can offer up the following basic
but concrete debugging tips.

To debug a PHP script:

¢ Make sure youre always running PHP
scripts through a URL (Figure 1.16)!

This is perhaps the most common
beginner’s mistake. PHP code must be
run through the Web server applica-
tion, which means it must be requested
through http://something.

¢ Know what version of PHP you're running.

Some problems will arise from the version
of PHP in use. Before you ever use any
PHP-enabled server, run the phpinfo.php
file (Script 1.2) to confirm the version of
PHP in use.

& Make sure display_errors is on.
This is a basic PHP configuration setting
(discussed in Appendix A). For security
reasons, PHP may not be set to display

(o) O () Hello, World!

i file: H,,fu_sersfiarryullmanflﬁ vh

The following was created by PHP:
Hello, world!\n"; 7>

A

Figure 1.16 Because | loaded this PHP script
directly in my Web browser (notice that the
address starts with file://), the PHP code is
not executed.

28

Getting Started with PHP

the errors that occur. If that’s the case,
you'll end up seeing blank pages when
problems occur. To debug the problem,
you'll need to see the error, so turn this
setting on while you'e learning. You'll find
instructions for doing so in Appendix A
and Chapter 3, “‘HTML Forms and PHP”

& Check the HTML source code.

Sometimes the problem is hidden in the
HTML source of the page. In fact, some-
times the PHP error message is hidden
there!

¢ Trust the error message!

Another very common beginner’s mistake
is to not fully read and trust the error that
PHP reports. Although the error message
can often be cryptic and may seem mean-
ingless, it can't be ignored. At the very
least, PHP is normally correct as to the
line on which the problem can be found.

& Take a break!

So many of the programming problems
I've encountered over the years, and the
vast majority of the toughest ones, have
been solved by walking away from my
computer for a while. It’s easy to get frus-
trated and confused, and in such situa-
tions, any further steps you take are likely
to only make matters worse.

v Tip

B These are just some general debugging
techniques, specifically tailored to the
beginning PHP programmer. They should
suffice for now, though, as the examples
in this book are relatively simple. More
complex coding requires more advanced
debugging techniques, so my PHP 6 and
MySQL 5 for Dynamic Web Sites: Visual
QuickPro Guide (Peachpit Press, 2007)
dedicates a whole chapter to this subject.

29

Sd3ilg 9NIDO9Ng3Q dIsvyg

This page intentionally left blank

VARIABLES

In the last chapter, you used PHP to send
simple text and HTML code to a Web
browser—in other words, something for
which you don't need PHP at all! Don't worry,
though; this book will teach you how to use
the print() function in conjunction with
other PHP features to do useful things with
your Web site.

To make the leap from creating simple,
static pages to dynamic Web applications
and interactive Web sites, you need to use
variables. Variables are an essential concept
in PHP, as well as in any other programming
language. Understanding what variables are,
the types that a language supports, and how
to use them is critical to your work.

This chapter will discuss the fundamentals of
variables used in PHP, and later chapters will
cover the different types in greater detail. If
you've never dealt with variables before, this
chapter will be a good introduction. If youre
familiar with the concept, then you should be
able to work through this section with ease.

31

S3IT19VIIVA

WHAT ARE VARIABLES?

Chapter 2

What Are Variables?

A variable is best thought of as a container
for data. Once data has been stored in a
variable (or, stated more accurately, once
avariable has been assigned a value), that
data/variable can be altered, printed to the
Web browser, saved to a database, emailed,
and so forth.

Variables in PHP are, by their nature, flexible:
You can put data into a variable, retrieve that
data from it (without affecting the value of
the variable), put new data in, and continue
this cycle as long as necessary. But variables
in PHP are also temporary: They only exist—
that is, they only have a value—for the dura-
tion of a script. Once a user clicks a link or
submits a form, they are taken to a new page
and those variables cease to exist, unless you
take special measures to alter their longevity.

Before I get too deep into the discussion of
variables, let’s write a quick script that lists
some of PHP’s predefined variables. These

are variables that you do not need to create,
but you can use, because PHP creates them
for you. Over the course of the book you'll be
introduced to many different predefined vari-
ables. For this example, I'll use the predefined
$_SERVER variable. It contains lots of informa-
tion about the computer on which PHP is
running. To display the variable’s value, I'll
turn to the print_r() function. This function
is used specifically to print a variable’s value
in a more readable format.

To print PHP’s predefined variables:

1. Create a new PHP script in your text edi-
tor or IDE (Script 2.1).

Script 2.1 The print_r() function is called in order to
see the values stored in the $_SERVER variable.

0086 = saript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Using print_r()</title>
7 </head>
8 <body>
9 <pre>
10 <?php // Script 2.1 - print_r.php

12 // Show the value of the $_SERVER

variable:
13 print_r ($_SERVER);
14
15 7>
16 </pre>
17 </body>
18 </html>

32

Variables

2. Create the initial HTML tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Using print_r()</title>
</head>
<body>
<pre>
This code repeats the XHTML template
created in the preceding chapter. Within
the body of the page, I'm using the <pre>
tags to make the generated PHP informa-
tion more legible. Although these tags are
deprecated (it's recommended that you
no longer use them), theyre fine for this
purpose. Without using the <pre> tags,
the result generated by the print_r()
function will be quite messy.

. Add the PHP code:

<?php // Script 2.1 - print_r.php
print_r ($_SERVER);

7>

This PHP code is just one function call,
print_r(). The function should be pro-
vided with the name of a variable. In this
example, the variable is $_SERVER, which
is special in PHP. $_SERVER stores all sorts
of data about the server: its name and
operating system, the name of the current
user, information about the Web server
application (Apache, Abyss, IIS, etc.), and
more. It also reflects the PHP script being
executed: its name, where it’s stored on
the server, and so forth.

Note that you must type $_SERVER exactly
asitis here, in all uppercase letters.

continues on next page

33

$ST1AVINVA Uy LVHMN

WHAT ARE VARIABLES?

Chapter 2

4.

Complete the HTML page:
</pre>

</body>

</html>

Save the file as print_r.php, upload it to
your server (or save it to the appropriate
directory on your computer), and test it in
your Web browser (Figure 2.1).

Once again, remember that you must run
all PHP scripts through a URL.

If possible, save the file on another com-
puter or server running PHP and run
the script in your Web browser again
(Figure 2.2).

r() - Mozilla Firefox
Fle Edit Wiew Hstory Bookmarks Tools Help

(O |http:H\ocalhost:BUUUﬂpnnt_r.php

o

|

Array
{
[ALLUSERSPROFILE] => C:%Documents and Settings\ill Users
[APPDATA] => C:%Documents and Settings) AdministratorhApplication Data
[CLIENTHANE] =» Console
[CommonProgremFiles] => C:\Progrem Files\Common Files
[COMPUTERMAME] =»> PARALLELSWINDOW
[ComSpec] => C:\WINDOWS)system3dz\cmd.exe
[FP_NO_HOST CHECK] =» HO
[HOMEDRIVE] =» C:
[HOMEPATH] => \Documents and Settings)idministrator
[IRERC] => C:\Documents and Settings)idministrator)irbre
[LOGONSERVER] => %% PARALLELSUINDOW
[WUNEEE_OF_PROCESSORT] => 1 |
[0%] =» Windows NT
[Path] =» C:TWINDOWS)systemd2;C: | WINDOWS; C: ' WINDOWSY System3 2 Mhem; C: 4 ATRSDE
[FATHEXT] =» .CONM;.EXE;.BAT:.CHMD:.VES:.VBE;.J3:.J3E;.WSF;.USH
[PHPRC] => C:\phpé
[FROCESSOR_ARCHITECTURE] =» xB86
[FROCESSOR_IDENTIFIER] =»> x56 Family & Model 15 Stepping 11, GenuinelIntel
[PROCESSOR_LEVEL] => &
[FROCESSOR_REVISION] =»> OfOb
[FrogramFiles] =»> C:\Program Files
[SESSIONNANE] => Console
[SystemDrive] =» C:
[SystemRoot] => C:\WINDOWS
[TEMP] = C:}DOCUME~1%ADMINI~1'\LOCALS~1Y Temp
[THP] => C:{\DOCUME~1}ADMINI~1{LOCALS~1} Temp
[USERDOMAIN] => PARLLLELSWINDOW
[USERMAME] => Administrator
[USERPROFILE] =» C:\Documents and Settings)idministrator
[windir] => C:\WINDOWS
[SERVER_ZOFTWARE] => lbyss/2.5.0.0-¥1-Win32 Mhysslib/2.5.0.0
[SERVER_PROTOCOL] => HTTF/1.1
[HTTPS] => off
[I§_SUBREQ] => false
[SERVER_PORT] =»> 8000

< | 3

v

Figure 2.1 The $_SERVER variable, as printed out by this script, is a master
list of values pertaining to the server and the PHP script.

34

Variables

v Tips

B Printing out the value of any variable as
you've done here is a great debugging
tool, because often the problem is that a
variable doesn't have the value that you
assume it does.

B Ifyoudontusethe HTML <pre></pre>
tags, the result will be like the mess in
Figure 2.3.

800 Using print_r()
[http://localhost/~larryullman/print_r.php

=
v

Array
(
[HTTP_HOST] => localhost

(HTTP_ACCEPT LANGUAGE) => en-us,en;g=0.5

(HTTP_ACCEPT ENCODING] => gzip,deflate
[HTTP_ACCEPT_CHARSET] => IS0-8859-1,utf-8;q=0.7,+%;q=0.7
[HTTP_KEEP ALIVE] => 300

(HTTP_CONMECTION] => keep-alive

(HTTP_CACHE_CONTROL] => max-age=(

[PATH] => /usr/bin:/bin:/usr/sbin:/sbin

[SERVER_SIGNATURE] =>

[SERVER_NAME] => localhost
(SERVER_ADDR] => ::1
(SERVER_PORT] => 80
[REMOTE_ADDR] => ::1
(DOCUMENT_ROOT] => /Library/WebServer/Documents
[SERVER_ADMIN] => youfexample.com
[SCRIPT_FILENAME] => /Users/larryullman/Sites/print_r.php
(REMOTE PORT] => 50373
[GATEWAY INTERFACE] => CGL/1.1
[SERVER_PROTOCOL] => HTTP/1.1
[REQUEST METHOD] => GET
[QUERY_STRING] =>
[REQUEST URI] => /~larryullman/print_r.php
[SCRIPT NAME] => /~larryullman/print r.php
[PHP_SELF] => /~larryullman/print_r.php
[REQUEST TIME] => 1223665853
(argv]) == Array

(

)

[argc] => 0

[HTTP_USER AGENT] => Mozilla/5.0 (Macintosh; U; Intel Mac 05 X 10.5; en-US; rv:l.9
[HTTP_ACCEPT] => text/html,application/xhtml+xml,application/xml;g=0.9,*/*;q=0.8

(SERVER_SOFTWARE] => Apache/2.2.8 (Unix) mod_ssl/2.2.8 OpenSSL/D.9.71 DAV/2 PHP/S.

\

Figure 2.2 With the
print_r.php page, different
servers will generate
different results (compare

SIS .

Tal+14 with Figure 2.1).

©) Using print_r{) - Mozilla Firefox
Fle FEdt Wiew History Bookmarks Tools Help

(] |http:fj\n(a\hnst:BDDDipr\ntJ.php 7 -|

Array ([ALLUSERSFROFILE] == C'\Documents and Settings\All Tzers [APPDATA] =>
Ci\Documents and Settings\Administrator\Application Data [CLIENTHNAME] => Console
[CommonProgramFiles] == C\Program Files\Common Files [COMPTUTERIAME] ==
PARALLELSWINDOW [ComSpec] == CAWINDOW S\eystem32\cmd. exe
[FP_NO_HOST CHECE]=> NO [HOMEDRIVE] == C: [HOMEPATH] == \Documents and —
Settings\ A dmimistrator [[RBRC] => C\Documents and Settings' A dministratorlirbre
[LOGOMNSERVER] == WPARALLELSWINDOW [INUMEBEER, OF PROCESSORS]=>1
[O8]=> Windows_NT [Path] => CAWINDOW S\system 32, CAYWINDOW S, CAWINDOWS
\Systemn 32V Whemn; CAATRSDE \bin, Crubyibin, Cphpé [PATHEXT] ==

COM, EXE;, BAT, CMD;, VB3, VEE; I3, J3E, WSF, WSH [PHPEC] => Clphpé
[PROCESSOR_ARCHITECTURE] = x86 [PROCESSOR_IDENTIFIER] => 286 Family 6
Model 15 Stepping 11, Gemuinelntel [PROCESSCOER_LEVEL] == 6

[PROCESSCE,_EEVISION] == 0f0b [ProgramFiles] == C'\Program Files [SESSICITITANME]

== Conscle [SystemDrive] == C: [SystemBRoot] => CAWINDOWS [TEMP] =>

CADOCUME~ NADMINI-NLOCALS- N Temp [THMP] == C\DOCUME~ TWADMINI-1
\LOCATS—1vTernp [USERDOMATN] == PARATTELSWINDOW [TTSERMANE] == i

Figure 2.3 Use the HTML
preformatting tags when

using print_r() to avoid an
incomprehensible page like this
(compare to Figures 2.1 and 2.2).

35

$ST1AVINVA Uy LVHMN

VARIABLE SYNTAX

Chapter 2

Variable Syntax

Now that you've had a quick dip in the vari-
able pool, it’s time to investigate the subject
further. In the preceding example, PHP's
predefined $_SERVER variable was used. You
can also create your own variables, once

you understand the proper syntax. To create
appropriate variable names, you must follow
these rules:

¢ Allvariable names must be preceded by a
dollar sign ($).

¢ Following the dollar sign, the variable
name must begin with either a letter
(A-Z, a~z) or an underscore (_).It can't
begin with a number.

& The rest of the variable name can contain
any combination and quantity of letters,
underscores, and numbers.

You may not use spaces within the name
of a variable. (Instead, the underscore is
commonly used to separate words.)

& Variable names are case-sensitive!
Consequently, $variable and $Variable
are two different constructs, although it
would be a bad idea to use two variables
with such similar names.

This last point is perhaps the most important:
variable names in PHP are case-sensitive.
Using the wrong letter case is very common
cause of bugs.

36

Variables

Script 2.2 This script shows how one might document
the purpose of variables. It’s always better to have
too many comments than too few.

eoe = Saript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"

content="text/html; charset=utf-8"/>

6 <title>Variables and Comments</title>

7 </head>

8 <body>

9 <pre>

10 <?php // Script 2.2

11

12 // Define my variables....

13

14 $year = 2009; // The current year.

15 $june_avg = 88; // The average temperature
for the month of June.

16 $page_title = "Weather Reports'; // A
title for the page.

17

18 // ... and so forth.

19

20 7>

21 </pre>

22 </body>

23 </html>

To help minimize bugs, I would recommend
the following policies:

L 2

L 2

Always use all lowercase variable names.

Make your variable names descriptive
(e.g., $first_name is better than $fn).

Use comments to indicate the purpose of
variables (Script 2.2), redundant as that
may seem.

Above all, be consistent with whatever
naming convention you choose!

v Tips

Unlike some other languages, PHP gener-
ally doesn't require you to declare or
initialize a variable prior to use. In other
words, you can refer to variables with-
out first defining them. That being said,
it's best not to do that; I try to write my
scripts so that every variable is defined
before use.

There are two main variable naming
conventions, determined by how you
delineate words. These are the so-called
camel-hump (named because of the way
capital letters break up the word—for
example, $FirstName) and underscore
($first_name) styles. I'll use the latter
convention in my examples.

37

XVLNAS 3T1aVIRIVA

TYPES OF VARIABLES

Chapter 2

Types of Variables

In this book, I'll cover three variable types:
numbers, strings, and arrays. I'll introduce
them quickly here, and later chapters will dis-
cuss them in more detail (Chapter 4, “Using
Numbers™; Chapter 5, “Using Strings™; and
Chapter 7, “Using Arrays”). A fourth variable
type, objects, is introduced in Appendix B,
“Resources and Next Steps, but isn't covered
in this book. That particular subject is just too
advanced for this beginner’s guide—in fact,
basic coverage of the subject in my PHP 5
Advanced: Visual QuickPro Guide (Peachpit
Press, 2007) requires over 150 pages.

Numbers

Technically speaking, PHP breaks numbers
into two types: integers and floating-point
(also known as double-precision floating-point
or doubles). Due to the lax way PHP handles
variables, it won't affect your programming
to group the two categories of numbers into
one all-inclusive membership. Still, I'll briefly
discuss the differences between the two, for
clarity’s sake.

The first type of numbers—integers—are the
same as whole numbers. They can be positive
or negative but include neither fractions nor
decimals. Numbers that use a decimal point
(even something like 1.0) are floating-point
numbers. You must also use floating-point
numbers to refer to fractions, because the
only way to express a fraction in PHP is to
convert it to its decimal equivalent. Hence
11/4is written as 1.25. Table 2.1 lists some
sample valid numbers and their formal type;
Table 2.2 lists invalid numbers and the rules
they violate.

Table 2.1

Valid Numbers in PHP

NumBER

1

1.0
1972
19.72
-1
-1.0

Table 2.2

Tyre

Integer
Floating-point
Integer
Floating-point
Integer
Floating-point

Invalid Numbers in PHP

NumBER
11/4
1972a
02.23.72

v Tips

B Asyoullsoon see, you can quote invalid
numbers to turn them into valid strings.

B PHP doesn't have a date type of variable
like that used in database applications

REASON

Contains a space and a slash
Contains a letter

Contains multiple decimals

and other programming languages.

The dates you work with in your PHP
scripts will therefore consist of numbers

and/or strings.

38

Variables

v Tips

B Notice that the "1972" example con-
verts an integer into a string by putting
it within quotes. Essentially, the string
contains the characters 7972, whereas
the number (a non-quoted value) would
be equal to 1972. It’s a fine distinction,
and one that won't matter in your code,
because you can perform mathematical
calculations with the string 71972 just as
you can with the number.

B In Chapter 1, I demonstrated how to cre-
ate a new line by printing the \n character
within double quotation marks. Although
escaping a quotation mark prints the
quotation mark, escaping an z prints a
new line, escaping an r creates a carriage
return, and escaping a ¢ inserts a tab into
your HTML source code.

B Understanding strings, variables, and
the single and double quotation marks is
critical to programming with PHP. For this
reason, I've dedicated a section at the end
of this chapter to the subject.

Strings

A string is any number of characters enclosed
within a pair of either single (") or double (")
quotation marks. Strings can contain any
combination of letters, numbers, symbols, and
spaces. Strings can also contain variables.

Examples of valid strings values include:

"Hello, world!"

"Hello, $first_name!"

"1 1/4"

'Hello, world! How are you today?'
"02.23.72"

"1972"

That last one is an empty string: a string that
contains no characters.

An example of an invalid string would be:
"I said, "How are you?""

This example can be tricky. I hinted at this
problem in Chapter 1, “Getting Started with
PHP” with respect to printing HTML code.
When PHP hits the second quotation mark,
it assumes the string ends there; the continu-
ing text (How...) causes an error. As I men-
tioned previously, to use a quotation mark
within a string you can escape the quotation
mark by putting a backslash (\) before it. By
changing this string to "I said, \"How are
you?\"", you tell PHP to treat the two quota-
tion marks as part of the value of the string,
rather than using them as the string’s open-
ing or closing indicators.

You can similarly circumvent this problem by
using different quotation mark types:

'I said, "How are you?"'
"I said, 'How are you?""

39

SITAVIIVA 40 S3dAL

TYPES OF VARIABLES

Chapter 2

Arrays Table 2.3
I'll cover arrays more thoroughly in Chapter 7, Indexed Array
but I'll introduce them briefly here. Whereas Kev VaLue
a string or a number contains a single value 0 Don
(both are said to be scalar), an array can have 1 Betty
more than one value assigned to it. You can 2 Roger
think of an array as a list of values. In other 3 Jane
words, you can put multiple strings and/or
numbers into one array.

Table 2.4
Arrays use keys to create and retrieve the .
values they store. The resulting structure—a Associative Array
list of key-value pairs—looks similar to a two- Kev VaLue
column spreadsheet. Interestingly, the array Vi Vermont
structure in PHP is so flexible that it can use NH New Hampshire
either numbers or strings for both the keys IA lowa
and the values. The array doesn't even need PA Pennsylvania

to be consistent in this respect. (All of this
will make more sense in Chapter 7, when you
start working with specific examples.)

PHP has two different types of arrays, based
on the format of the keys. If the array uses
numbers for the keys (Table 2.3), it’s an
indexed array. If it uses strings for the keys
(Table 2.4), it's an associative array. In either
case, the values in the array can be of any
variable type (string, number, and so on).

v Tips

B The array’s key is also called its index.
You'll see these two terms used inter-
changeably.

B An array can, and frequently will, contain
other arrays, creating what is called a
multidimensional array.

B What PHP calls an associative array is
called a sash in Perl and Ruby, among
other languages.

40

Variables

Assigning Values
to Variables

I mentioned at the beginning of this chapter
that you don't need to initialize or declare
your variables (as a general rule), but you still
need to know how to assign a value to one.
To assign a value to a variable, regardless

of the variable type, you use the equals sign
(=). Therefore, the equals sign is called the
assignment operator, because it assigns the
value on the right to the variable on the left.
For example:

$number = 1;
$floating_number = 1.2;
$string = "Hello, world!";

To print out the value of a variable, you can
use the print() function:

print $number;
print $string;

If you want to print a variable's value within a
context, you can place the variable’s name in
the printed string, so long as you use double
quotation marks:

print "Number is $number";
print "String is $string";

Using print() in this way works for the sca-
lar (single-valued) variable types, which is to
say numbers and strings. Arrays and objects
use more complex syntax for defining and
accessing their values, as you'll later learn.

Because variable types aren't locked in (PHP
is referred to as a weakly typed language),
they can be changed on the fly:

$variable = 1;
$variable = "Greetings";

If you were to print the value of $variable
now, the result would be Greetings. The
following script better demonstrates the
concept of assigning values to variables and
then accessing those values.

41

SITAVIIVA OL SANTVA ONINDISSY

ASSIGNING VALUES TO VARIABLES

Chapter 2

To assign values to and access
variables:

1.

2.

Create a new PHP script in your text
editor or IDE (Script 2.3).

Create the initial HTML tags.

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Variables</title>
</head>
<body>

Begin the PHP code:
<?php // Script 2.3 - variables.php

Define some number and string variables
$street = "100 Main Street";

$city = "State College";

$state = "PA";

$zip = 16801;

These lines create some different vari-
ables of string and number types. The
strings are defined using quotation marks,
and each variable name follows the syn-
tactical naming rules

Because this is the first true multilined
PHP script you've written, I'll remind

you to conclude each statement with a
semicolon.

Script 2.3 This script defines some basic variables
and then prints out their values.

eceoe

= Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Variables</title>
7 </head>
8 <body>
9 <?php // Script 2.3 - variables.php

11 // An address:

12 $street = "100 Main Street";
13 $city = "State College";

14 $state = "PA";

15 $zip = 16801;

17 // Print the address.

18 print "<p>The address is:
$street

$city $state $zip</p>";

19

20 7>

21 </body>
22 </html>

42

Variables

800

| http:/ /localhost/~larryullman /variables.php ﬁ'v

The address 1s:
100 Main Street
State College PA 16801

Variables =

Figure 2.4 Some variables are assigned values, then

printed within a context.

800
) (" hup://localhost/~larryullman/variables.php g ¥

Parse error: syntax error, unexpected T_VARIABLE in
{Users/larryullman/Sites/variables.php on line 14

Mozilla Firefox =

Figure 2.5 Parse errors are the most common type
of PHP error, as you’ll discover. They’re frequently
caused by missing semicolons or an imbalance of
quotation marks or parentheses.

Variables

800 =
(" http://localhost/~larryullman /variables.php {}Y

Notice: Undefined variable: state in /Users/larryullman
/Sites/variables.php on line 18

The address is:
100 Main Street
State College 16801

v

Figure 2.6 The Undefined variable error indicates

that you used a variable with no value (it hasn’t been

defined). This can happen with misspellings and
capitalization inconsistencies.

5.

Print out the variables:

print "<p>The address is:

$street
$city $state

$zip</p>";
Here you use a single print() statement
to access all the variables. The entire
string to be printed (consisting of text,
HTML tags, and variables) is enclosed
within double quotation marks. The
HTML
 tags make the text flow
over multiple lines in the browser window
(remember, the extra space and slash in
the break tag are there for sake of XHTML
compliance).

Complete the PHP section and the
HTML page:

7>

</body>

</html>

Save the file as variables.php, upload it
to your server (or save it to the appropri-
ate directory on your computer), and test
it in your Web browser (Figure 2.4).

v Tips

If you see a parse error (Figure 2.5) when
you run this script, you probably either
omitted a semicolon or have an imbal-
ance in your quotation marks.

If one of the variable’s values isn't printed
out or you see an Undefined variable error
(Figure 2.6), you most likely failed to spell
avariable name the same way twice.

If you see a blank page, you most likely
have an error but PHPs display._errors
configuration is set to off. See Chapter 3,
“HTML Forms and PHP” for details.

43

SITAVIIVA OL SANTVA ONINDISSY

UNDERSTANDING QUOTATION MARKS

Chapter 2

Understanding
Quotation Marks

Now that you know the basics of variables
and how to create them, I'll clarify the impor-
tant concept of quotation marks. PHP, like
most programming languages, allows you to
use both double (") and single (") quotation
marks—but they give vastly different results.
It’s critical that you comprehend the distinc-
tion, so the next example will run tests using
both types.

The rule of thumb is this: Items within single
quotation marks are treated literally; items
within double quotation marks are extrapo-
lated (that is, a variable’s name is replaced
with its value, as you saw in Script 2.3). This
rule applies anywhere in PHP you might use
quotation marks, including the creation of
string variables and using the print() func-
tion. An example is the best way to explain.

To use quotation marks:

1. Begin anew PHP script in your text editor
or IDE (Script 2.4).

2. Create the initial HTML tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Quotes</title>
</head>
<body>

Script 2.4 This script simply demonstrates how the
type of quotation mark you use with variables affects
the end result.

8086 = Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/

|
|
|
|
|
|
|
|
| xhtml" xml:lang="en" lang="en">
|
|
|
|
|
|
|
|
|
|

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

6 <title>Quotes</title>

7 </head>

:8 <body>

|9 <?php // Script 2.4 - quotes.php

|10

11 // Single or double quotation marks won't
matter here:

12 $first_name = 'Larry';

13 $last_name = "Ullman";

14

15 // Single or double quotation marks DOES
matter here:

16 $namel = '$first_name $last_name';
17 $name2 = "$first_name $last_name";
18

19 // Single or double quotation marks DOES
matter here:

20 print "<hl>Double Quotes</hl><p>namel is
$namel

21 name2 is $name2</p>";

22

23 print '<h1>Single Quotes</hl><p>namel is
$namel

24 name2 is $name2</p>';

25

26 7>

27 </body>
28 </html>

44

Variables

3. Begin the PHP code:

<?php // Script 2.4 - quotes.php

. Create two string variables:
$first_name = 'Larry';
$last_name = "Ullman";

It doesn't matter whether you use single
or double quotation marks for these two
variables, as each string should be treated
literally. However, if youTre using your own
name here (and feel free to do so) and

it contains an apostrophe, you'll need

to either use double quotation marks

or escape the apostrophe within single
quotation marks:

$last_name = "0'Toole";
$last_name = 'O\'Toole"';

. Create two different name variables, using
the first- and last-name variables:

$namel = '$first_name $last_name';
$name2 = "$first_name $last_name";

In these lines it makes a huge difference
which quotation marks you use. The
$namel variable is now literally equal

to $first_name $last_name, because no
extrapolation occurs. Conversely, $name2
is equal to Larry Ullman, presumably the
intended result.

. Print out the variables using both types of

quotation marks:

print "<hl>Double Quotes</hl>
<p>namel is $namel

name2 is $name2</p>";

print '<h1>Single Quotes</h1>
<p>namel is $namel

name2 is $name2</p>";

Again, the quotation marks make all the

difference. The first print() statement

prints out the values of the $namel and

$name2 variables, whereas the second

prints out $namel and $name2.

continues on next page

45

SHAV NOILYLOND DNIANVLSHIAN(

UNDERSTANDING QUOTATION MARKS

Chapter 2

The HTML in the print() statements
makes them more legible in the browser,
and each statement is executed over two
lines, which is perfectly acceptable.

Complete the PHP section and the HTML
page:

7>

</body>

</html>

Save the file as quotes. php, upload it to
your server (or save it to the appropriate
directory on your computer), and test it in
your Web browser (Figure 2.7).

v Tips

If you'e still confused about the distinc-
tion between the two types of quotation
marks, stick with double quotation marks
and you'll be safe.

Arguably, using single quotation marks
when you can is preferable, as PHP won't
need to search the strings looking for
variables. This rule is more of a finesse
issue—the performance won't be measur-
ably affected regardless.

The shortcuts for creating newlines (\n),
carriage returns (\r), and tabs (\t) must
also be used within double quotation
marks to have the desired effect.

Remember that you don't always need
to use quotation marks. When assigning
anumeric value or when only printing a
variable, you can skip them:

$num = 2;

print $num;

%) Quotes - Mozilla Firefox

File Edit Yiew

Hiskary

M=)
Bookmarks Tools

]
Help

I: |j |http:,I',I'|DCEI”‘IDS|::SUUU,I'C]LIDtBS.DhD

77 -

Double Quotes

name] iz Ffirst_name $last_name
name2 i Latry Tlman

Single Quotes

narne 1 is Fnamel
name?2 iz fname2

Figure 2.7 The different quotation marks (single

versus double) dictate whether the variable’s name or

value is printed.

46

HTML FORMS

AND PHP

The preceding chapter provides a brief intro-
duction to the topic of variables. Although
you'll often create your own variables, you'll
also commonly use variables in conjunction
with HTML forms. Forms are a fundamen-
tal unit of today’s Web sites, enabling such
features as registration and login systems,
search capability, and online shopping. Even
the most basic site will find logical reasons to
incorporate HTML forms. And with PHP, it’s
stunningly simple to receive and handle data
generated by them.

With that in mind, this chapter will cover
the basics of creating HTML forms and how
the form data is accessible in a PHP script.
Simultaneously, this chapter will introduce
several key concepts of real PHP program-
ming, including how to manage errors in
your scripts.

47

dHd NV SWd04 TWLH

CREATING A SIMPLE FORM

Chapter 3

Creating a Simple Form

For the HTML form example in this chap-
ter, you'll create a feedback page that takes
the user’s salutation, name, email address,
response, and comment (Figure 3.1). You'll
need to create the necessary fields with this
in mind. The code to generate a form goes
between opening and closing form tags:

<form>
form elements
</form>

The form tags dictate where a form begins
and ends. Every element of the form must be
entered between these two tags. The opening
form tag also contains an action attribute. It
indicates to which page the form data should
be submitted. This is one of the most impor-
tant considerations when creating a form. In
this book, the action attributes will always
point to PHP scripts:

<form action="somepage.php">

Before creating this next form, I want to
briefly revisit the topic of XHTML. As stated
in the first chapter, XHTML has some rules
that result in a significantly different syntax
than HTML. For starters, the code needs

to be in all lowercase letters, and every

tag attribute must be enclosed in quotes.
Further, every tag must be closed; those that
don't have formal closing tags, like input, are
closed by adding a blank space and a slash at
the end. Thus, in HTML you might write

<INPUT TYPE=TEXT NAME=address SIZE=40>
but in XHTML it’s

<input type="text" name="address"
size="40" />

I'hope this quick explanation will help to
avoid confusion with the XHTML in the fol-
lowing script.

©) Feedback Form, - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,l’Feedback.htmI {_\j v|

Please complete this form to submit your feedbacls

Marne: | r. V|| |

Buadpddess| |

Response: Thisis.. O excellent O okay O boring

Cotmments:

Send My Feedback

Figure 3.1 The HTML form that will be used in this
chapter’s examples.

48

HTML Forms and PHP

Script 3.1 This HTML page has a form with several
different types of input.

8e6e6 =1 Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:Z "http://www.w3.org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>

:6 <title>Feedback Form</title>

|7 </head>

|8 <body>

|9 <!-- Script 3.1 - feedback.html -->

:10 <div><p>Please complete this form to

submit your feedback:</p>

11

12 <form action="handle_form.php">

13

14 <p>Name: <select name="title">

15 <option value="Mr.">Mr.</option>

16 <option value="Mrs.">Mrs.</option>

17 <option value="Ms.">Ms.</option>

18 </select> <input type="text"
name="name" size="20" /></p>

19

20 <p>Email Address: <input type="text"
name="email" size="20" /></p>

21

22 <p>Response: This is...

23 <input type="radio" name="response"
value="excellent" /> excellent

24 <input type="radio" name="response"
value="okay" /> okay

25 <input type="radio" name="response"
value="boring" /> boring</p>

26

27 <p>Comments: <textarea name="comments"
rows="3" cols="30"></textarea></p>

28

29 <input type="submit" name="submit"
value="Send My Feedback" />

30

31 </form>

32 </div>

33 </body>

34 </html>

To create a basic HTML form:

1.

Begin a new document in your text editor
or IDE (Script 3.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Feedback Form</title>
</head>
<body>
<!-- Script 3.1 - feedback.html -->

<div><p>Please complete this form to
submit your feedback:</p>

Add the opening form tag;

<form action="handle_form.php">
The form tag indicates that this form
will be submitted to the page handle_
form.php, found within the same direc-
tory as this HTML page. You can use a
full URL to the PHP script, if youd prefer
to be explicit.

continues on next page

49

WYO04 31dWIS V ONILVIY)

CREATING A SIMPLE FORM

Chapter 3

3.

Add a select menu plus a text input for
the person’s name:

<p>Name: <select name="title">
<option value="Mr.">Mr.</option>
<option value="Mrs.">Mrs.</option>
<option value="Ms.">Ms.</option>

</select> <input type="text"
name="name" size="20" /></p>
The inputs for the person’s name will
consist of two elements (see Figure 3.1).
The first is a drop-down menu of common
titles: Mr., Mrs., and Ms. Each option listed
between the select tags is an answer the
user can choose (Figure 3.2). The second
input is a basic text box for the persons
full name.

Stick to a consistent naming convention
within the form by giving each form ele-
ment a logical and descriptive name. Only
use letters, numbers, and the underscore
(_) when naming elements.

Add a text input for the user’s email
address:

<p>Email Address: <input type="text"
name="email" size="20" /></p>

Add radio buttons for a response:

<p>Response: This is...

<input type="radio" name="response"
value="excellent" /> excellent

<input type="radio" name="response"
value="okay" /> okay

<input type="radio" name="response"
value="boring" /> boring</p>

This HTML code creates three radio

buttons (clickable circles; see Figure

3.1). Because they all have the same

name value, only one of the three can be

selected at a time. Per XHTML rules, the

code is in lowercase except for the values,

and an extra space and slash are added to

the end of each input to close the tag.

Mame: ibdr. |

Ernail £ Mrs.

ES

Figure 3.2 The select element creates a drop-down
menu of options.

50

HTML Forms and PHP

v Tips

Note that you use the HTML extension
(.html) here because it’s a standard
HTML page (not a PHP page). You could
use the . php extension without a prob-
lem, even though there’s no actual PHP
code. (Remember that in a PHP page,
anything not within the PHP brackets—
<?php and ?>—is assumed to be HTML.)

Be certain that your action attribute
correctly points to an existing file on the
server, or your form won't be processed
properly. In this case, you indicate that
the form should be submitted to handle_
form.php, which is located in the same
directory as the feedback.html page.

In this example, an HTML form is created

by hand-coding the HTML, but you can
do this in a Web page application (such
as Adobe Dreamweaver) if youre more
comfortable with that approach.

6. Add a textarea to record the comments:

10

<p>Comments: <textarea
name="comments" rows="3"
cols="30"></textarea></p>

A textarea gives the user more space to
enter their comments than a text input
would. However, the text input lets you
limit how much information the user
can enter, which you can't do with the
textarea (not without using JavaScript,
that is). When youre creating a form,
choose input types appropriate to the
information you wish to retrieve from
the user.

Note that a textarea does have a
closing tag.

. Add the submit button:

<input type="submit" name="submit"
value="Send My Feedback" />

The value attribute of a submit element
is what appears on the button in the
Web browser (see Figure 3.1). You could
also use Go! or Enter, for example.

Close the form:

</form>

. Complete the page:

</div>
</body>
</html>

Save the page as feedback.html and
view it in your browser.

Because this is an HTML page, not
a PHP script, you could view it in
your Web browser directly from
your computer.

51

WYO04 31dWIS V ONILVIY)

UsING GET or POST

Chapter 3

Using GET or POST

The experienced HTML developer will notice
that the feedback form is missing one thing:
The initial form tag has no method value. This
attribute tells the server how to transmit the
data from the form to the handling script.

You have two choices with method: GET

and POST. Many HTML coders may not be
entirely clear on the distinction and when to
use which. The difference between using GET
and POST is squarely in how the information
is passed from the form to the processing
script. The GET method sends all the gath-
ered information along as part of the URL.
The POST method transmits the information
invisibly to the user. For example, upon sub-
mitting a form, if you use the GET method,
the resulting URL will be something like this:

http://www.example.com/page.php?
some_var=some_value&age=20&. ..

Whereas using the POST method, the end
user will only see:

http://www.example.com/page.php

When choosing which method to use, you

may want to keep in mind these three factors:

& With the GET method, a limited amount
of information can be passed.

¢ 'The GET method sends the input to the
handling script publicly (which means,
for example, that a password entered in
a form can be viewed by anyone within
eyesight of the Web browser, creating a
larger security risk).

¢ A page generated by a form that used the
GET method can be bookmarked, but one
based on POST can't be.

This book uses POST almost exclusively for
handling forms, although you'll also see a
useful technique involving the GET method
(see “Manually Sending Data to a Page” at the

Script 3.2 The method attribute with a value of post
is been added to complete the form.

8ce = Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Feedback Form</title>

7 </head>

8 <body>

9 <!-- Script 3.2 - feedback.html -->

:10 <div><p>Please complete this form to

| submit your feedback:</p>

11
12 <form action="handle_form.php"
method="post">

13

14 <p>Name: <select name="title">

15 <option value="Mr.">Mr.</option>

16 <option value="Mrs.">Mrs.</option>

17 <option value="Ms.">Ms.</option>

18 </select> <input type="text"
name="name" size="20" /></p>

19

20 <p>Email Address: <input type="text"
name="email" size="20" /></p>

21

22 <p>Response: This is...

23 <input type="radio" name="response"
value="excellent" /> excellent

24 <input type="radio" name="response"
value="okay" /> okay

25 <input type="radio" name="response"
value="boring" /> boring</p>

26

27 <p>Comments: <textarea name="comments"
rows="3" cols="30"></textarea></p>

28

29 <input type="submit" name="submit"
value="Send My Feedback" />

30

31 </form>

32 </div>

33 </body>

34 </html>

52

http://www.example.com/page.php?some_var=some_value&age=20&
http://www.example.com/page.php?some_var=some_value&age=20&
http://www.example.com/page.php

HTML Forms and PHP

) Sourc of it ocalbat: B0 edhack i Wil Fiafen end of this chapter). The final decision about
which method to use should be based on
mitigating factors in your form and whether
the resulting page should be bookmark-able.
Experience will make the distinction clearer,
but you can safely use POST most of the time.

<uption value
<option value:
<option value:
</enlacts cinput type="

To add a method to your script:

Srmme wize=ti0t facips
rErmatl AAEESSE CAnBul REDESTLERLT namesTemalit sizesciOf (3o/ps 1

cprBesponse: This ia3...

. Open feedback.html (Script 3.1) in your
Zingut typenr il text editor or IDE.

<imput ty) Inge/ps

:“:": R ‘” :':ou_':l":""""'“’" 2. Within the initial form tag, add
rorms e method="post" (Script 3.2, line 12).
o The form’s method attribute tells the
— browser how to send the form data to
Figure 3.3 With forms, much of the important the receiving script. Because there may

information, such as the action and mgthf)d values be alot of data in the form’s submission
or element names, can only be seen within the HTML

source code. (including the comments), and because
it wouldn't make sense for the user to
bookmark the resulting page, POST is

Confirm,

e To display this page, Firefox must send information that will repeat any action (such as a search or the 10gical mEthOd tO use.
order confirmation) that was performed earfier,
3. Save the script and reload it in your

) - ‘Web browser.
Figure 3.4 If a user refreshes a PHP script that data

has been sent to via the POST method, they will be 4. View the source of the page to make sure
asked to confirm the action (the specific message will

differ using other browsers). all the required elements are present and

have the right attributes (Figure 3.3).
v Tips

B In the discussion of the methods, GET
and POST are written in capital letters to
make them stand out. However, the form
in the script uses post for XHTML compli-
ance. Don't worry about this inconsis-
tency (if you caught it at all)—the method
will work regardless of case.

B Another difference between GET and
POST is that attempts to reload a page
that data has been posted to will result
in a confirmation box (Figure 3.4). Users
will not see such messages for pages
loaded via the GET method.

53

1S0d ¥0 139 9NiIsn

RECEIVING FORM DATA IN PHP

Chapter 3

Receiving Form
Data in PHP

Now that you've created a basic HTML form,
you need to write the PHP script that will
receive and process the form data. For this
example, the PHP script will simply repeat
what the user entered into the form. In later
chapters, you'll learn how to take this infor-
mation and store it in a database, send it in
an email, write it to a file, etc.

To access the submitted form data, you need
to refer to a particular predefined variable.
Chapter 2, “Variables,” already introduced
one predefined variable: $_SERVER. The spe-
cific variable the PHP script would refer to for
handling form data is either $_GET or $_POST.
If an HTML form uses the GET method, the
submitted form data will be found in $_GET.
If an HTML form uses the POST method, the
submitted form data will be found in $_POST.

$_GET and $_POST, besides being predefined
variables (i.e., ones you don't need to create),
are arrays, a special variable type. This means
that each variable may contain numerous
values. You cannot use arrays like so:

print $_POST; // Will not work!

Instead, to access a specific value, you must
refer to the array’s index or key. Chapter 7,
“Using Arrays, goes into this subject in detail,
but the premise is actually very simple. Start
with a form element whose name attribute
has a value of something:

<input type="text" name="something" />

Then, assuming that the form uses the
POST method, the value entered into
that form element would be available
in $_POST['something']:

print $_POST['something'];

©J Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,l’handIe_Form.php {_\j v|

Parse ervor: syntax error, unexpected
T_ENCAPSED_AWD "WHITESPACE, expecting
T_STRING or T_VARIABLE or T_NUM STRING in
C:'\Program Files'Abyss Web Serverhtdocs
‘handle_form.php on line 14

Figure 3.5 This ugly parse error is created by
attempting to use $_POST['name'] within double
quotation marks.

54

HTML Forms and PHP

Script 3.3 This script displays the form data submitted
to it by referencing the associated $_POST variables.

20O 2 script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0rg/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

| 4 <head>

|5 <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>
:6 <title>Your Feedback</title>

:7 </head>

| 8 <body>

|19 <?php // Script 3.3 handle_form.php

11 // This page receives the data from
feedback.html.

12 // It will receive: title, name, email,
response, comments, and submit in $_POST.

13 $title = $_POST['title'];

14 $name = $_POST['name'];

15 $response = $_POST['response'];

16 $comments = $_POST['comments'];

17

18 // Print the received data:

19 print "<p>Thank you, $title $name, for
your comments.</p>

20 <p>You stated that you found this
example to be '$response' and added:

$comments</p>";

21

22 7>

23 </body>
24 </html>

Unfortunately, there is one little hitch here:
when used within double quotation marks,
the single quotation marks around the key
will cause parse errors (Figure 3.5):

print "Hello $_POST['name'].";

There are a couple of ways you can avoid
this problem. In this chapter, I'll go with the
solution that’s syntactically the simplest:
just assign the particular $_POST element to
another variable first:

$name = $_POST['name'];
print "Hello, $name.";

Two final notes before implementing this
information in a new PHP script. First, $_POST
is case-sensitive: it must be typed exactly as
you see it here (a dollar sign, one underscore,
then all capital letters). Second, the indexes
in $_POST—name in the preceding example—
must exactly match the name values given to
the form elements.

To create the PHP script:

1. Begin a new document in your text editor
or IDE (Script 3.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Your Feedback</title>
</head>
<body>

continues on next page

55

dHd NI Y1vg WY04 9NIAITOTY

RECEIVING FORM DATA IN PHP

Chapter 3

2.

Add the opening PHP tag and any
comments:

<?php // Script 3.3 handle_form.php

// This page receives the data from
feedback.html.

// It will receive: title, name,
email, response, comments, and
submit in $_POST.

Comments are added to the script to

make it clear what its purpose is. Even

though the feedback.html page indicates
where the data is sent (via the action
attribute), a comment here indicates

the reverse (where this script is getting

its data).

Assign the received data to new variables:
$title = $_POST['title'];

$name = $_POST['name'];

$response = $_POST['response'];
$comments = $_POST['comments'];
Again, since the form uses the POST
method, the submitted data can be

found in the $_POST array. The individual
values are accessed using the syntax
$_POST['name']. This works regardless

of the form element’s type (input, select,
checkbox, etc.).

To make it easier to use these values
inaprint() statement in Step 4, each
value is assigned to a new variable here.

I am not doing anything with either
$_POST['email'] or $_POST['submit'],
but you can incorporate them if youd like.

Print out the user information:

print "<p>Thank you, $title $name,
for your comments.</p>

<p>You stated that you found this
example to be '$response' and
added:
$comments</p>";

This one print statement uses the four

variables within a context to show the

user what data the script received.

56

HTML Forms and PHP

o000 Feedback Form
(| http://localhost/feedback . htm!

Please complete this form to submit your feedback:

Name: |Larry Ullman
Email Address: | larry@example.com

Response: This is... ® excellent © okay O boring

ru problems so far!
Comments:

Send My Feedback

=
Y

Figure 3.6 Whatever the user enters into the HTML
form should be printed out to the Web browser by the
handle_form.php script (see Figure 3.7).

0o Your Feedback (=
http:/ /localhost/handle_form.php ‘ﬁ' v

Thank you, Mr. Larry Ullman, for your comments.

You stated that you found this example to be 'excellent’ and added:
No problems so far!

Figure 3.7 This is another application of the print()
statement discussed in Chapter 1, but it constitutes
your first dynamically generated Web page.

[e N &) Your Feedback =
http://localhost/handle_form.php ﬁ v

Notice: Undefined index: Name in /Users/larryullman/Sites
/handle_form.php on line 14

Thank you, Mr. , for your comments.

You stated that you found this example to be 'excellent’ and added:
No problems so far!

Figure 3.8 Notices like these occur when variables
that don’t exist are used in some ways. In this
particular case, the cause is erroneously referring to
$_POST['Name'] when it should be $_POST['name"'].

5.

Close the PHP section and complete the
HTML page:

7>

</body>

</html>

Save the script as handle_form.php.

Upload the script to the server (or store
it in the proper directory on your com-
puter if you've installed PHP), making
sure it’s saved in the same directory as
feedback.html.

Test the script in your Web browser by
going to feedback.html and then submit-
ting the form (Figures 3.6 and 3.7).

You must load the HTML form through

a URL so that when it's submitted to the
PHP script, that PHP script is also run
through a URL.

If you see a blank page, read the next
section of the chapter for how to display
the errors that presumably occurred. If
you see an error notice (Figure 3.8) or see
that a variable does not have a value when
printed, you likely misspelled either the
form element’s name value or the $_POST
array’s index (or you filled out the form
incompletely).

57

dHd NI Y1vg WY04 9NIAITOTY

RECEIVING FORM DATA IN PHP

Chapter 3

v Tips

B Ifyouwant to pass a preset value along

to a PHP script, use the hidden type

of input within your HTML form. For
example, the line

<input type="hidden" name="this_page"
value="feedback.html" />

inserted between the form tags will create
avariable in the handling script called
$_POST['this_page'] with the value
feedback.html.

Notice that the value of radio button and
select menu variables is based on the
value attribute of the selected item (for
example, excellent from the radio button).
This is also true for check boxes. For text
boxes, the value of the variable is what the
user typed.

If the handle_form.php script displays
extra slashes in submitted strings, see the
sidebar “Magic Quotes” for an explanation
and solution.

Some of the changes in PHP 6 are simply
the removal of features that were no
longer welcome. Among these is regis-
ter_globals. This setting, when enabled,
would make the values in $_POST, $_GET,
$_SERVER, and other predefined arrays
accessible in a different way. Relying upon
register_globals created less secure
scripts, so that setting was turned off as of
PHP 4.2 and removed entirely as of PHP 6.

Magic Quotes

Earlier versions of PHP had a feature
called Magic Quotes, which was removed
in PHP 6. Magic Quotes—when enabled—
automatically escapes single and double
quotation marks found in submitted form
data. So the string /d like more informa-
tion would be turned into /|d like more
information.

The escaping of potentially problematic
characters can be useful and even neces-
sary in some situations. But if the Magic
Quotes feature is enabled on your PHP
installation (which means youre using a
pre-PHP 6 version), you'll see these back-
slashes when the PHP script prints out the
form data. You can undo its effect using
the stripslashes() function. To apply it
to the handle_form.php script, you would
do this, for example:

$comments = stripslashes($_POST
['comments']);

Instead of just:
$comments = $_POST['comments'];

This will have the effect of turning an
escaped submitted string back to its
original, non-escaped value.

If youre using PHP 6 or later, you no
longer need to worry about this, as Magic
Quotes has been removed (for several
good reasons).

HTML Forms and PHP

Displaying Errors

One of the very first issues when it comes

to debugging PHP scripts is that you may or
may not even see the errors that occur. After
you install PHP on a Web server, it will run
under a default configuration with respect to
security, how it handles data, performance,
and so forth. One of the default settings is

to not display any errors that occur. In other
words, the display_errors setting will be off
(Figure 3.9). When that’s the case, what you
might see when a script has an erroris a
blank page. (This is the norm on fresh instal-
lations of PHP; most hosting companies will
enable display_errors.)

The reason that errors should not be dis-
played in a live site is that it's a security risk.
Simply put, PHP's errors often give away too
much information for the public at large to
see. But you, the developer, do need to see
these errors in order to fix them!

To have PHP display errors, you can

¢ Turndisplay_errors back on. (See the
“‘Configuring PHP” section of Appendix A,
“Installation and Configuration,” for more
information.)

& Turndisplay_errors back on for an indi-
vidual script.

continues on next page

eno phpinfo() S
&Q‘k htip.Hlocalhostmhp|nf0,php W v)_
display_errors off o .A
display_startup_errors off off @
doc_root no value no value
docref_ext no value no value
docref_root no value no vaiue
error_append_string no value no value
error_log no value no vaiue
error_prepend_string no value ne valug e
error_reporting 30719 30719 3
== =))<+

Figure 3.9 Run a phpinfo() script (e.g., Script 1.2) to see your server’s display_errors setting.

59

SYoUAJ ONIAVIdASIA

DISPLAYING ERRORS

Chapter 3

While developing a site, the first option is by
far preferred. However, it’s only an option for
those with administrative control over the
server. Anyone can use the second option by
including this line in your script:

ini_set ('display_errors', 1);

The ini_set() function allows a script

to temporarily override a setting in PHPs
configuration file. In that example, you'll turn
the display_errors setting to on, which is
represented by the number 1.

Although this second method can be imple-
mented by anyone, the downside is that if
your script contains certain kinds of errors
(discussed next in the chapter), the script
cannot be executed. Therefore, this line of
code can't be executed, and that particular
error—or any that prevents a script from
running at all—still results in a blank page.

To display errors:

1. Openhandle_form.php in your text editor
or IDE.

2. Asthe firstline of PHP code, enter the
following (Script 3.4):
ini_set ('display_errors', 1);
Again, this line tells PHP youd like to
see any errors that occur. You should
call it first thing in your PHP section so
the rest of the PHP code will abide by
this new setting.

Script 3.4 This addition to the PHP script turns on
the display_errors directive so that any errors that
occur are shown.

8oe = Script

11 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Your Feedback</title>
7 </head>
| 8 <body>

|19 <?php // Script 3.4 - handle_form.php #2

11 1ini_set ('display_errors', 1); // Let me
learn from my mistakes!

12

13 // This page receives the data from
feedback.html.

14 // It will receive: title, name, email,
response, comments, and submit in $_POST.

15 $title = $_POST['title'];

16 $name = $_POST["'name'];

17 $response = $_POST['response'];

18 $comments = $_POST['comments'];

19

20 // Print the received data:

21 print "<p>Thank you, $title $name, for
your comments.</p>

22 <p>You stated that you found this
example to be '$response' and added:

$comments</p>";

23

24 7>

25 </body>
26 </html>

60

HTML Forms and PHP

©J Feedback Form - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,l’Feedback.html {_\j v|

Please complete this form to submit your feedbacle

Marne: | Mr. v||Larry Ullman |

Buadpddess| |

Response: Thisis.. O excellent O okay O boring

Cotmments:

Send My Feedback

Figure 3.10 Trying the form again...

©) Your Feedback - Mozilla Firefox |
File Edit Miew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,I’handIejorm.php ﬁ v|

Notice: TTndefined ndex response m C:'\Program
Files\Abyss Web Server'htdocs'handle form.php on
line 17

Thank you, Wr. Larry Tlman, for your comments.

Tou stated that vou found this example to be " and added:

Figure 3.11 ..and now any error messages are
displayed. The notices are generated by references
to any form element for which there is no value.

3.
4,

Save the file as handle_form.php.

Upload the file to your Web server and
test it in your Web browser (Figures 3.10
and 3.11).

If the resulting page has no errors in it,
then the script will run as it did before. If
you saw a blank page when you ran the
form earlier, you should now see mes-
sages like those in Figure 3.11. Again, if
you see such errors, you likely misspelled
the name of a form element, misspelled
the index in the $_POST array, or didn't fill
out the form completely.

v Tips

Make sure display_errors is enabled any
time you'e having difficulties debugging
a script. If you installed PHP on your
computer, I 4ighly recommend enabling it
in your PHP configuration while you learn
(again, see Appendix A).

If you see a blank page when running a
PHP script, also check the HTML source
code for errors or other problems.

The ini_set() function can only be used
to alter certain settings. See the PHP
manual for details.

Remember that the display_errors
directive only controls whether error
messages are sent to the Web browser.
It doesn't create errors or prevent them
from occurring in any way.

61

SYoUAJ ONIAVIdASIA

ERROR REPORTING

Chapter 3

Error Reporting

Another PHP configuration issue you should
be aware of, along with display_errors, is
error reporting. There are eleven different
types of errors in PHP—as of version 6, plus
four user-defined types (which aren't covered
in this book). Table 3.1 lists the four most
important general error types, along with a
description and example.

You can set what errors PHP reports on using
the error_reporting() function. The func-
tion takes either a number or some constants
(nonquoted strings with predetermined
meanings) to adjust the levels. The most
important of these constants, which directly
relate to the types of errors in Table 3.1, are
listed in Table 3.2.

Table 3.1
PHP Error Types
TYPE DeScription EXAMPLE
Notice Nonfatal error that may or may not be Referring to a variable that has no value
indicative of a problem
Warning Nonfatal error that is most likely problematic Misusing a function
Parse error Fatal error caused by a syntactical mistake Omission of a semicolon or an imbalance of quotation
marks, braces, or parentheses
Error A general fatal error Memory allocation problem
Table 3.2

Error Reporting Constants

Name
E_NOTICE
E_WARNING
E_PARSE
E_ERROR
E_ALL
E_STRICT

62

HTML Forms and PHP

Script 3.5 Adjust a script’s level of error reporting
to give you more or less feedback on potential and
existing problems.

86 =1 Saript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:2 "http://www.w3.org/TR/xhtml1/DTD/

: xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>

|6 <title>Your Feedback</title>

:7 </head>

| 8 <body>

:9 <?php // Script 3.5 - handle_form.php #3

|10

11 ini_set ('display_errors', 1); // Let me
learn from my mistakes!

12 error_reporting (E_ALL | E_STRICT);
// Show all possible problems!

13

14 // This page receives the data from
feedback.html.

15 // It will receive: title, name, email,
response, comments, and submit in $_POST.

16 $title = $_POST['title'];

17 $name = $_POST['name'];

18 $response = $_POST['response'];

19 $comments = $_POST['comments'];

20

21 // Print the received data:

22 print "<p>Thank you, $title $name, for
your comments.</p>

23 <p>You stated that you found this
example to be '$response' and added:

$comments</p>";

24

25 7>

26 </body>

27 </html>

Using this information, you could add any of
the following to a script:

error_reporting (0);
error_reporting (E_ALL);
error_reporting (E_ALL & ~E_NOTICE);

The first line says that no errors should be
reported. The second requests that all errors
be reported. The last example states that you
want to see all error messages except notices
(the & ~means and not). Keep in mind that
adjusting this setting doesn’t prevent or cre-
ate errors, it just affects whether or not errors
are reported.

It's generally best to develop and test PHP
scripts using the highest level of error report-
ing possible. To accomplish that, declare that
you want to see all errors plus strict error
reporting:

error_reporting (E_ALL | E_STRICT);

The E_ALL setting does not include E_STRICT,
which is why that lines says that all errors
should be shown or (the vertical bar, called
the pipe) strict errors should be shown. This
latter setting takes reporting a step further
but also raises notices for things that could
be a problem in future versions of PHP. Let’s
apply this setting to the handle_form.php page.

To adjust error reporting:

1. Open handle_form.php in your text editor
(Script 3.4).

2. After the ini_set() line, add the follow-
ing (Seript 3.5):
error_reporting (E_ALL | E_STRICT);

3. Save the file as handle_form.php.

continues on next page

63

ONILYOdIY YOUY]

ERROR REPORTING

Chapter 3

4. Place the file in the proper directory for
your PHP-enabled server and test it in
your Web browser by submitting the form
(Figures 3.12 and 3.13).

At this point, if the form is filled out com-
pletely and the $_POST indexes exactly
match the names of the form elements,
you shouldn't see any errors (as in the fig-
ures). If any problems exist, including any
potential problems (thanks to E_STRICT),
they should be displayed and reported.

v Tips

B The PHP manual lists all the error-
reporting levels, but those listed here
are the most important.

B You can also adjust the level of PHP error
reporting in the php. ini file, although
such a change affects every script. If
you are running your own PHP server,
you'll probably want to tweak this while
developing your scripts. See the section
“Configuring PHP” of Appendix A.

©) Feedback Form, - Mozilla Firefox

File Edit View History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,I’Feedback.htmI {_\j v|

Please complete this form to submit your feedback:

Matme: | Ms. V||Edna Krabapple |

Eua Adeecs [sana@wanpizcon |

Response: Thisis... O excellent O okay @ bering

Encugh already!

Cotmments:

Send My Feedback

Figure 3.12 Trying the form one more time...

3 Your Feedback - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

(|j |http:Hlncalhost:SDDDIhandIe_Form.php ﬁ '|

Thank you, Ms. Edna Erabapple, for your comments

You stated that you found this example to be 'boring' and added:
Enough already!

Figure 3.13 ...and the result (if filled out completely
and without any programmer errors).

64

HTML Forms and PHP

Manually Sending
Data to a Page

The last example for this chapter is a slight
tangent to the other topics but plays off the
idea of handling form data with PHP. As
discussed in the section “Using GET or POST;
if a form uses the GET method, the resulting
URL is something like

http://www.example.com/page.php?
some_var=some_value&age=20&. . .

The receiving page (here, page .php) is sent a
series of name=value pairs, each of which is
separated by an ampersand (&). The whole
sequence is preceded by a question mark
(immediately after the handling script's name).

To access the values passed to the page in
this way, turn to the $_GET variable. Just as
you would when using $_POST, refer to the
specific name as an index in $_GET. In this
example, page . php receives a $_GET[' some_
var'] variable with a value of some_value, a
$_GET['age'] variable with a value of 20, and
so forth.

As I said, you can pass data in this way by
creating an HTML form that uses the GET
method. But you can also use this same idea
to send data to a PHP page without the use of
the form. Normally youd do so by using links
in another page:

Some Link

That link, which could be dynamically gener-
ated by PHP after pulling some data from a
database, will pass the value 22 to page . php,
accessiblein $_GET['id'].

To try this for yourself, this next pair of
scripts will easily demonstrate this concept,
using a hard-coded HTML page.

65

39Vd V Ol ViV 9NIAN3IS ATTVANVIN

http://www.example.com/page.php?some_var=some_value&age=20&
http://www.example.com/page.php?some_var=some_value&age=20&

MANUALLY SENDING DATA TO A PAGE

Chapter 3

To create the HTML page:

1. Begin anew document in your text editor
or IDE (Script 3.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Greetings!</title>
</head>
<body>
<!-- Script 3.6 - hello.html -->

<div><p>Click a link to say
hello:</p>

2. Create links to a PHP script, passing val-
ues along in the URL:

<a href="hello.php?name=
Michael">Michael</11>
<a href="hello.php?name=
Celia">Celia</1i>
<a href="hello.php?name=
Jude">Jude</1i>
<a href="hello.php?name=
Sophie">Sophie</1i>

Script 3.6 This HTML page uses links to pass values
to a PHP script in the URL (thereby emulating a form
that uses the GET method).

806 = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Greetings!</title>

7 </head>

8 <body>

9 <!-- Script 3.6 - hello.html -->

10 <div><p>Click a link to say hello:</p>
11

12

13 <a href="hello.php?name=
Michael">Michael</1i>

14 <a href="hello.php?name=
Celia">Celia</1i>

15 <a href="hello.php?name=
Jude">Jude</11i>

16 <a href="hello.php?name=
Sophie">Sophie</1i>

17

18

19 </div>

20 </body>

21 </html>

66

HTML Forms and PHP

OO Greetings! =
i "Iy http: / /localhost/hello.html {:r?h

Click a link to say hello:

« Michael
« Celia

« Jude

s Sophie

%

Figure 3.14 The simple HTML page, with four links to
the PHP script.

The premise here is that the user sees
alist oflinks, each associated with a
specific name (Figure 3.14). When the
user clicks a link, that name is passed to
hello.php in the URL.

If you want to use different names, that’s
fine, but stick to one-word names without
spaces or punctuation (or else they won't
be passed to the PHP script properly, for
reasons that will be explained in time).

. Complete the HTML page:

</div>
</body>
</html>

. Save the script as hello.html and place it

within the proper directory on your PHP-
enabled server.

. Load the HTML page through a URL in

your Web browser.

Although you can view HTML pages
without going through a URL, you'll click
links in this page to access the PHP script,
so you'll need to start off using a URL
here (see Figure 3.14). Don't click any of
the links yet, though, as the PHP script
doesn't exist.

67

39Vd V Ol ViV 9NIAN3IS ATTVANVIN

MANUALLY SENDING DATA TO A PAGE

Chapter 3

To
1.

2.

3.

create the PHP script:

Begin a new document in your text editor
or IDE (Script 3.7):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Greetings!</title>
</head>
<body>

Begin the PHP code:
<?php // Script 3.7 - hello.php

Address the error management, if desired:

ini_set ('display_errors', 1);
error_reporting (E_ALL | E_STRICT);
These two lines, which configure how
PHP responds to errors, are explained in
the pages leading up to this section. They
may or may not be necessary for your
situation but can be helpful.

Script 3.7 This PHP page refers to the name value
passed in the URL in order to print a greeting.

8ceoe

= Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Greetings!</title>
7 </head>
| 8 <body>

|9 <?php // Script 3.7 - hello.php

11 ini_set ('display_errors', 1); // Let me
learn from my mistakes!

12 error_reporting (E_ALL | E_STRICT);
// Show all possible problems!

13

14 // This page should receive a name value
in the URL.

15

16 // Say "Hello":

17 $name = $_GET['name'];

18 print "<p>Hello, <span style=
\"font-weight: bold;\">$name
!</p>";

19

20 7>

21 </body>
22 </html>

68

HTML Forms and PHP

800

| http://localhost/hello.php?name=Michael 1} v

Hello, Michael!

Greetings! =

Figure 3.15 By clicking the first link, Michael is
passed along in the URL and is greeted by name.

800

'. http: / /localhost/hello.php?name=Sophie 1}7

Hello, Sophie!

Greetings! =

Figure 3.16 By clicking the last link, Sophie is sent
along in the URL and is also greeted by name.

4,

Use the name value passed in the URL to

create a greeting:

$name = $_GET['name'];

print "<p>Hello, <span style=
\"font-weight: bold;\">$name
!</p>"};

The name variable is sent to the page

through the URL (see Script 3.6). To

access that value, refer to $_GET["name'].

Again, you would use $_GET (as opposed

to $_POST) because the value is coming

from a GET method.

As with earlier PHP scripts, the value in

the predefined variable ($_GET) is first

assigned to another variable, to simplify

the syntaxin the print() statement.

. Complete the PHP code and the HTML

page:
7>
</body>
</html>

. Save the script as hello.php and place it

within the proper directory on your PHP-
enabled server.

It should be saved in the same directory
as hello.html (Script 3.6).

Click the links in hello.html to view the
result (Figures 3.15 and 3.16).

69

39Vd V Ol ViV 9NIAN3IS ATTVANVIN

MANUALLY SENDING DATA TO A PAGE

Chapter 3

v Tips

B Ifyourunhello.php directly, you'll get
an error notice because no name value
would be passed along in the URL
(Figure 3.17).

B Because hello.php reads a value from
the URL, it works independently of
hello.html. For example, you can directly
edit the hello.php URL to greet anyone
by name, even ifhello.html does not
have alink for that name (Figure 3.18).

W Ifyouwant to use alink to send mul-
tiple values to a script, separate the
variable=value pairs (for example,
first_name=Larry) with the ampersand
(&). So, another link may be hello.php?
first_name=Larry&last_name=Ul1lman.

W Although the example here—setting the

value of a person’s name—may not be
very practical, this basic technique is
useful on many occasions. For example,
a PHP script might constitute a template,
and the content of the resulting Web page
would differ based on the values the page
received in the URL.

®00 Greetings! =
) http:/ flocalhost/ hello.php WY

Notice: Undefined index: name in /Users/larryullman
/Sites/hello.php on line 17

Hello, !

Figure 3.17 If the $_GET['name'] variable isn’t
assigned a value, the browser prints out this awkward
message, along with the error notice.

800 Greetings! =
“f http:/ /localhost/hello.php?name=C3P0 ﬁ'v

Hello, C3PO!
P

Figure 3.18 Any value assigned to name (lowercase)
in the URL is greeted by the PHP script.

70

USING NUMBERS

Chapter 2, “Variables, loosely discussed the
different types of variables, how to assign
values to them, and how theyre generally
used. In this chapter, you'll work specifically
with number variables—both integers (whole
numbers) and floating-point numbers (aka
floats or decimals).

The chapter begins by creating an HTML
form that will be used to generate number
variables. Then you'll learn how to perform
basic arithmetic, how to format numbers,

and how to cope with operator precedence.
The last two sections of this chapter cover
incrementing and decrementing numbers
and generating random numbers. Throughout
the chapter, you'll also find mentions of other
useful number-related PHP functions.

71

syIgWNN ONIS

CREATING THE FORM

Chapter 4

Creating the Form

Most of the PHP examples in this chapter
will perform various calculations based on
an e-commerce premise. A form will take
quantity, price, tax rate, shipping cost, and
discount values, and the PHP script that
handles the form will return a total cost. That
cost will also be broken down by the number
of payments the user wants to make in order
to generate a monthly cost value.

To start, let’s create an HTML page that
allows the user to enter the different values
(Figure 4.1).

To create the HTML form:

1. Begin anew HTML document in your
text editor or IDE (Script 4.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Product Cost Calculator
</title>
</head>
<body><!-- Script 4.1 -
calculator.html -->

<div><p>Fill out this form to
calculate the total cost:</p>

00 Product Cost Calculator =

@ http://localhost/calculator.html Ty vh

Fill out this form to calculate the total cost:

Price: |
Quantity: [

Discount: |

Tax:: :(%}

Shipping method: (iownd sy)

Number of payments to make: |

Figure 4.1 This form takes numbers from the user and
sends them to the PHP page.

e

72

Using Numbers

Script 4.1 This basic HTML form generates the
numbers upon which mathematical calculations
will be performed in a PHP script.

egce =1 Saript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

: xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>

:6 <title>Product Cost Calculator</title>

|7 </head>

:8 <body><!-- Script 4.1 - calculator.html -->

|9 <div><p>Fill out this form to calculate

: the total cost:</p>

| 10

:11 <form action="handle_calc.php"
method="post">

12

13 <p>Price: <input type="text" name="price"
size="5" /></p>

14

15 <p>Quantity: <input type="text"
name="quantity" size="5" /></p>

16

17 <p>Discount: <input type="text"
name="discount" size="5" /></p>

18

19 <p>Tax: <input type="text" name="tax"
size="3" /> (%)</p>

20

21 <p>Shipping method: <select
name="shipping">

22 <option value="5.00">Slow and steady
</option>

23 <option value="8.95">Put a move on it.
</option>

24 <option value="19.36">I need it
yesterday!</option>

25 </select></p>

26

27 <p>Number of payments to make:
<input type="text" name="payments"
size="3" /></p>

28

29 <input type="submit" name="submit"
value="Calculate!" />

30

31 </form>

32

33 </div>

34 </body>

35 </html>

2. Create the initial form tag;

<form action="handle_calc.php"
method="post">

This form tag begins the HTML form. Its
action attribute indicates that the form
data will be submitted to a page called
handle_calc.php. The tag’s method attri-
bute tells the page to use POST to send
the data. See Chapter 3, “HTML Forms
and PHP” for more on any of this.

Create the inputs for the price, quantity,
discount, and tax:
<p>Price: <input type="text"
name="price" size="5" /></p>
<p>Quantity: <input type="text"
name="quantity" size="5" /></p>
<p>Discount: <input type="text"
name="discount" size="5" /></p>
<p>Tax: <input type="text"
name="tax" size="3" /> (%)</p>
HTML has no input type for numbers, so
you create text boxes for these values. A
parenthetical indicates the formatting
for the tax as a percent.

Also remember that the names used for
the inputs have to correspond to valid
PHP variable names (letters, numbers,
and the underscore only; doesn't start
with a number, and so forth).

continues on next page

73

WYO04 FH1 ONILLVIY)

CREATING THE FORM

Chapter 4

4.

Add a field in which the user can select a
shipping method:

<p>Shipping method: <select
name="shipping">

<option value="5.00">Slow and
steady</option>

<option value="8.95">Put a move on
it.</option>

<option value="19.36">I need it
yesterday!</option>

</select></p>

The shipping selection is done using

a drop-down menu. The value of the

selected option is the cost for that option.

Therefore, if the user selects, for example,

the Put a move on it. option, the value of

$_POST['shipping'] in handle_calc.php

will be 8.95.

Complete the HTML form:

<p>Number of payments to make:
<input type="text" name="payments
size="3" /></p>

<input type="submit" name="submit"
value="Calculate!" />

</form>

The final two input types take a number

for how many payments are required

and then create a submit button (labeled

Calculate!). The closing form tag marks

the end of the form section of the page.

Complete the HTML page:
</div>

</body>

</html>

Save the script as calculator.html and
view it in your Web browser.

Because this is an HTML page, you can
view it directly in a Web browser.

74

Using Numbers

Script 4.2 This PHP script performs all the standard
mathematical calculations using the numbers
submitted from the form.

06 2 saript
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
:6 <title>Product Cost Calculator</title>
:7 <style type="text/css" media="screen">
| 8 .number { font-weight: bold;}

|9 </style>

:10 </head>

|11 <body>

12 <?php // Script 4.2 - handle_calc.php

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $_POST array:

19 $price = $_POST['price'];

20 $quantity = $_POST['quantity'];

21 $discount = $_POST['discount'];

22 $tax = $_POST['tax'];

23 $shipping = $_POST['shipping'];

24 $payments = $_POST['payments'];

25

26 // Calculate the total:

27 $total = $price * $quantity;

28 $total = $total + $shipping;

29 $total = $total - $discount;

30

31 // Determine the tax rate:

32 $taxrate = $tax/100;

33 $taxrate = $taxrate + 1;

34

35 // Factor in the tax rate:

36 $total = $total * $taxrate;

37

38 // Calculate the monthly payments:

39 $monthly = $total / $payments;

40

(script continues on next page)

Performing Arithmetic

Just as you learned in grade school, basic
mathematics involve the principles of addi-
tion, subtraction, multiplication, and divi-
sion. These are accomplished in PHP using
the most obvious operators:

¢ Addition (+)

¢ Subtraction (-)
& Multiplication (*)
¢ Division (/)

To demonstrate these principles, you'll create
a PHP script that calculates the total cost for
the sale of some widgets. This handling script
could be the basis of a shopping-cart appli-
cation—a very practical Web page feature
(although in this case the relevant number
values will come from calculator.html).

When you'e writing this script, be sure to
note the use of comments (Script 4.2) to
illuminate the different lines of code and the
reasoning behind them.

To create your sales-cost calculator:

1. Create a new document in your text
editor or IDE (Script 4.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Product Cost Calculator
</title>

continues on next page

75

JILIWHLIYY ONIWYJO4d3d

PERFORMING ARITHMETIC

Chapter 4

<style type="text/css"
media="screen">

.number { font-weight: bold;}
</style>
</head>
<body>

Note that I'm defining one CSS class here,
called number. Any element within the
page that has that class value will be given
extra font weight. In other words, when
the numbers from the form are reprinted
in the script’s output, I'd like them to be

in bold.

Insert the PHP tags and address error
handling, if desired:

<?php // Script 4.2 - handle_calc.php

Depending on your PHP configuration,
you may or many not want to add a cou-
ple oflines that turn on display_errors
and adjust the level of error reporting. See
Chapter 3 for specifics.

Assign the $_POST elements to local
variables:

$price = $_POST['price'];

$quantity = $_POST['quantity'];
$discount = $_POST['discount'];

$tax = $_POST["tax'];

$shipping = $_POST['shipping'];
$payments = $_POST['payments'];

The script will receive all of the form

data in the predefined $_POST variable.
To access individual form values, refer

to $_POST['index'], replacing index

with the corresponding form element’s
name value. These values are assigned to
individual local variables here, to make it
easier to use them throughout the rest of
the script.

Note that each variable is given a descrip-
tive name and is written entirely in lower-
case letters.

Script 4.2 continued

8o0e = Seript

41 // Print out the results:

42 print "<div>You have selected to
purchase:

43 $quantity
widget(s) at

44 $$price
price each plus a

45 $$shipping
shipping cost and a

46 $tax
percent tax rate.

47 After your $
$discount discount, the total
cost is

48 $$total
.

49 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p></div>";

50

51 7>

52 </body>

53 </html>

76

Using Numbers

4. Begin calculating the total cost:

$total = $price * $quantity;

$total = $total + $shipping;

$total = $total - $discount;

The asterisk (*) indicates multiplication
in PHP so the total is first calculated as the
number of items purchased ($quantity)
multiplied by the price. Then the shipping
cost is added to the total value (remember
that the shipping cost correlates to the
value attribute of the shipping drop-down
menu), and the discount is subtracted.

Note that it's perfectly acceptable to
determine a variable’s value in part by
using that variable’s existing value (as
you do in the last two lines).

. Calculate the tax rate and the new total:

$taxrate = $tax/100;

$taxrate = $taxrate + 1;

$total = $total * $taxrate;

The tax rate should be entered as a per-
cent—for example, 8 or 5. 75. This number
is then divided by 100 to get the decimal
equivalent of the percent (.08 or .0575).
Finally, you calculate how much some-
thing costs with tax by adding 1 to the
percent and then multiplying that new
rate by the total. This is the mathemati-
cal equivalent of multiplying the decimal
tax rate times the total and then adding
this result to the total (for example, a

5 percent tax on $100 is $5, making the
total $105, which is the same as multiply-
ing $100 times 1.05).

. Calculate the monthly payment:
$monthly = $total / $payments;

As an example of division, assume that
the widget(s) or whatever is being pur-
chased can be paid for over the course of
many months. Hence, you divide the total
by the number of payments to find the
monthly payment.

continues on next page

77

JILIWHLIYY ONIWYJO4d3d

PERFORMING ARITHMETIC

Chapter 4

7. Print the results:

print "<div>You have selected to
purchase:

$quantity
 widget(s) at

$$price
 price each plus a

$$shipping
 shipping cost and a

$tax
percent tax rate.

After your $
$discount discount, the
total cost is

$$total
.

Divided over
$payments monthly payments,
that would be $<span class=
\"number\">$monthly
each.</p></div>";

The print() statement sends every value

to the Web browser along with some text.

To make it easier to read,
 tags are

added to format the browser result; in

addition, the print() function oper-
ates over multiple lines to make the PHP
code cleaner. Each variable’s value will

be highlighted in the browser by wrap-

ping it within span tags that have a class

attribute of number (see Step 1).

8. Close the PHP section and complete the
HTML page.
7>
</body>
</html>

00 Product Cost Calculator —

& http://localhost/calculator.html Ty vh

Fill out this form to calculate the total cost:

Prmc:;ﬂ;;;_ﬁ
(Juanrny:ﬁ;____ﬁ
Discount: EIUTE
Thx:ﬁ;__ﬁ(%}

Shipping method: | slow and steady E

Number of payments to make: |12

Figure 4.2 The HTML form...

78

Using Numbers

Product Cost Calculator

@00
|| http://localhost/handle_calc.php

You have selected to purchase:

6 widget(s) at

$19.95 price each plus a

$5.00 shipping cost and a

6 percent tax rate.

After your $10.00 discount, the total cost is $121.582.
Divided over 12 monthly payments, that would be
510.131833333333 cach.

=]
o)

Figure 4.3 ...and the resulting calculations.

800 Product Cost Calculator =
|| http://localhost/handle_calc.php ﬁ' v

You have selected to purchase:

6 widget(s) at

$19.95 price cach plus a

$5.00 shipping cost and a

percent tax rate.

After your $ discount, the total cost is $124.7.
Divided over 12 monthly payments, that would be
510.391666666667 cach.

Figure 4.4 You can omit or change any value and
rerun the calculator. Here I’'ve omitted the tax and
discount values.

v Tips

B Asyoull certainly notice, the calcula-
tor comes up with numbers that don't
correspond well to real dollar values (see
Figures 4.3 and 4.4). In the next section,
“Formatting Numbers,” you'll learn how to
compensate for this result.

B Ifyou want to print the value of the total
before tax or before the discount (or
both), you can do so two ways. You can
insert the appropriate print() state-
ments immediately after the proper
value has been determined but before the
$total variable has been changed again.
Or, you can use new variables to contain
the values of the subsequent calcula-
tions (for example, $total_with_tax and
$total_less_discount).

9. Save your script as handle_calc.php and
place it in the proper directory for your
PHP-enabled server.

Make sure that calculator.html isin
this same directory.

10. Test the script in your Web browser

(Figures 4.2 and 4.3).

Not to belabor the point, but make sure
you start by loading the HTML form
through a URL (http://something) so
that when it’s submitted, the PHP script
is also run through a URL.

You can experiment with these values
to see how effectively your calcula-

tor works. If you omit any values, the
resulting message will just be a little odd
but the calculations should still work
(Figure 4.4).

B Because variables start with a dollar

sign, using one to print out a figure such
as $2000.00 has to be handled carefully.
You can't use $$variable, because the
combination of two dollar signs creates a
type of variable that’s too complex to dis-
cuss in this book. One solution is to put
something—a space or an HTML tag, as
in this example—between the dollar sign
and the variable name. Another option is
to escape the first dollar sign:

print "The total is \$$total";

B This script performs differently, depending

on whether the various fields are submit-
ted. The only truly problematic field is the
number of monthly payments: If this is
omitted, you'll see a division-by-zero warn-
ing. Chapter 6, “Control Structures; will
cover validating form data before it's used.

79

JILIWHLIYY ONIWYJO4d3d

FORMATTING NUMBERS

Chapter 4

Formatting Numbers

Although the calculator is on its way to being
practical, it still has one legitimate problem:
You can't ask someone to make a monthly
payment of $10.13183333. To create more
usable numbers, you need to format them.

There are two appropriate functions for this
purpose. The first, round(), rounds a value

to a specified number of decimal places. The
functionss first argument is the number to

be rounded. This can be either a number or

a variable with a number value. The second
argument is optional; it represents the number
of decimal places to round to. For example:

round (4.30); // 4

round (4.289, 2); // 4.29
$num = 236.26985;

round ($num); // 236

The other function you can use in this
situation is number_format(). It works like
round() in that it takes a number (or a vari-
able with a numeric value) and an optional
decimal specifier. This function has the added
benefit of formatting the number with com-
mas, the way it would commonly be written:

number_format (428.4959, 2); // 428.50
number_format (428, 2); // 428.00
number_format (123456789);

// 123,456,789

Let’s rewrite the PHP script to format the
numbers appropriately.

To format numbers:

1. Openhandle_calc.php inyour text editor
or IDE (Script 4.2).

2. After all the calculations but before the
print() statement, add the following
(Script 4.3):
$total = number_format ($total, 2);
$monthly = number_format

($monthly, 2);

Script 4.3 The number_format() function is applied
to the values of the number variables, so they are
more appropriate.

eo0e = Saript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

|

|

l

[3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

|4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
:6 <title>Product Cost Calculator</title>
:7 <style type="text/css" media="screen">
| 8 .number { font-weight: bold;}

|9 </style>

:10 </head>

|11 <body>

12 <?php // Script 4.3 - handle_calc.php #2

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $_POST array:

19 $price = $_POST['price'];

20 $quantity = $_POST['quantity'];

21 $discount = $_POST['discount'];

22 $tax = $_POST['tax'];

23 $shipping = $_POST['shipping'];

24 $payments = $_POST['payments'];

25

26 // Calculate the total:

27 $total = $price * $quantity;

28 $total = $total + $shipping;

29 $total = $total - $discount;

30

31 // Determine the tax rate:

32 $taxrate = $tax/100;

33 $taxrate = $taxrate + 1;

34

35 // Factor in the tax rate:

36 $total = $total * $taxrate;

37

38 // Calculate the monthly payments:

39 $monthly = $total / $payments;

40

(script continues on next page)

80

Using Numbers

Script 4.3 continued
8oe) Script

|41 // Apply the proper formatting.

:42 $total = number_format ($total, 2);

:43 $monthly = number_format ($monthly, 2);

| 44

:45 // Print out the results:

:46 print "<div>You have selected to

| purchase:

|47 $quantity

| widget(s) at

|48 $$price

price each plus a

|49 $$shipping

| shipping cost and a

|50 $tax

| percent tax rate.

51 After your $
$discount discount, the total
cost is

52 $$total
.

53 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p></div>";

54

55 7>

56 </body>
57 </html>

® O O Product Cost Calculator =
) [hrtp:/ /localhost/calculator.html ﬁ' v

Fill out this form to calculate the total cost:

Price: [99.00 |
Quantity:[4 |
Discount: W
1hx:§;;_j(%)

Shipping method: [Ftsmoveomi 18]

Number of payments to make: |24

Figure 4.5 Another execution of the form.

To format the numbers, you apply this
function after every calculation has been
made but before theyre sent to the Web
browser. The second argument (the 2)
indicates that the resulting number
should have exactly two decimal places;
this setting rounds the numbers and adds
zeros at the end, as necessary.

3. Save the file, place it in the same directory
as calculator.html, and test it in your
browser (Figures 4.5 and 4.6).

v Tips

B Another, much more complex, way to for-
mat numbers is to use the printf() and
sprintf() functions. Due to their tricky
syntax, theyre not discussed in this book;
see the PHP manual for more information.

B Non-Windows versions of PHP also have
amoney_format() function, which can be
used in lieu of number_format().

For complicated reasons, the round()
function rounds exact halves (.5, .05,
.005, and so on) down half the time and
up half the time.

B The number_format() function takes two
other optional arguments that let you
specify what characters to use to indicate
a decimal point and break up thousands.
This is useful, for example, for cultures
that write 7,000.89 as 1.000,89. See the
PHP manual for the proper syntax, if you
want to use this option.

800 Product Cost Calculator
[http://localhost/handle_calc.php

You have selected to purchase:

4 widget(s) at

$99.00 price each plus a

$8.95 shipping cost and a

5.5 percent tax rate.

After your $25.00 discount, the total cost is $400.85.
Divided over 24 monthly payments, that would be $16.70 each.

A

Figure 4.6 The updated version of the script returns
more appropriate number values thanks to the
number_format() function.

81

SYIGWNN ONILLYWIOS

UNDERSTANDING PRECEDENCE

Chapter 4

Understanding
Precedence

Inevitably, after a discussion of the different
sorts of mathematical operators comes the
discussion of precedence. Precedence refers
to the order in which a series of calculations
are executed. For example, what is the value
of the following variable?

$number = 10 - 4 / 2;

Is $number worth 3 (10 minus 4 equals 6,
divided by 2 equals 3) or 8 (4 divided by 2
equals 2, subtracted from 10 equals 8)? The
answer here is 8, because division takes pre-
cedence over subtraction.

Appendix B, “Resources and Next Steps, shows
the complete list of operator precedence for
PHP (including operators that haven't been
covered yet). However, instead of attempting
to memorize a large table of peculiar char-
acters, you can bypass the whole concept by
using parentheses. Parentheses always take
precedence over any other operator. Thus:

$number = (10 - 4) / 2; // 3
$number = 10 - (4 / 2); // 8

Using parentheses in your calculations
ensures that you never see peculiar results
due to precedence issues. Parentheses can
also be used to rewrite complex calcula-
tions in fewer lines of code. Let’s rewrite the
handle_calc.php script, combining multiple
lines into one while maintaining accuracy by
using parentheses.

To manage precedence:

1. Openhandle_calc.php inyour text editor
or IDE (Script 4.3).

2. Change the way the total is first calcu-
lated (Script 4.4):

$total = (($price * $quantity) +
$shipping) - $discount;

Script 4.4 By using parentheses, calculations made
over multiple lines (see Script 4.3) can be compressed

without affecting the script’s mathematical accuracy.
8oe = Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

| 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

|

|

l

:3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>
:6 <title>Product Cost Calculator</title>
|7 <style type="text/css" media="screen">
:8 .number { font-weight: bold;}

|9 </style>

:10 </head>

11 <body>

12 <?php // Script 4.4 - handle_calc.php #3

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $_POST array:

19 $price = $_POST['price'];

20 $quantity = $_POST['quantity'];

21 $discount = $_POST['discount'];

22 $tax = $_POST['tax'];

23 $shipping = $_POST['shipping'];

24 $payments = $_POST['payments'];

25

26 // Calculate the total:

27 $total = (($price * $quantity) +
$shipping) - $discount;

28

29 // Determine the tax rate:

30 $taxrate = ($tax/100) + 1;

31

32 // Factor in the tax rate:

33 $total = $total * $taxrate;

34

35 // Calculate the monthly payments:

36 $monthly = $total / $payments;

37

(script continues on next page)

82

Using Numbers

Script 4.4 continued
8oe) Script

38 // Apply the proper formatting.

39 $total = number_format ($total, 2);

40 $monthly = number_format ($monthly, 2);

41

42 // Print out the results:

43 print "<div>You have selected to
purchase:

44 $quantity
widget(s) at

45 $$price
price each plus a

46 $$shipping
shipping cost and a

47 $tax
percent tax rate.

48 After your $
$discount discount, the total
cost is

49 $$total
.

50 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p></div>";

51

52 7>

53 </body>
54 </html>

000 Product Cost Calculator =
| http://localhost/calculator.html ﬂ' v

Fill out this form to calculate the total cost:

. | e |
Price: | 1.50

Quantity: | 250
Discount: |0 |

—_—

Tax: s | (%)

Shipping et (inees e 8)

Number of payments to make: 2

Figure 4.7 Testing the form one more time.

There’s no reason not to make all the
calculations in one step, as long as you
use parentheses to ensure that the math
works properly. The other option is to
memorize PHP’s rules of precedence for
multiple operators, but using parentheses
is alot easier.

3. Change how the tax is calculated:
$taxrate = ($tax/100) + 1;

Again, the tax calculations can be made in
one line instead of two separate ones.

4. Save the script, place it in the same direc-
tory as calculator.html, and test it in
your browser (Figures 4.7 and 4.8).

v Tips

B Be sure that you match your parentheses
consistently as you create your formulas
(every opening parenthesis requires a
closing parenthesis). Failure to do so will
cause parse errors.

B Granted, using the methods applied here,
you could combine all the total calcula-
tions into just one line of code (instead
of three)—but there is such a thing as
oversimplifying.

800 Product Cost Calculator =
) [hup://localhost/handle_calc.php ﬁv v

You have selected to purchase:

250 widget(s) at

$1.50 price each plus a

$19.36 shipping cost and a

6 percent tax rate.

After your $0 discount, the total cost is 5418.02.

Divided over 2 monthly payments, that would be $209.01 each.

Figure 4.8 Even though the calculations have been
condensed, the math works out the same. If you see
different results or get an error message, double-
check your parentheses for balance (an equal number
of opening and closing parentheses).

83

3IN3Id3DIAd ONIANVLSYIANN

INCREMENTING AND DECREMENTING A NUMBER

Chapter 4

Incrementing and
Decrementing a Number

PHP, like Perl and most other programming
languages, includes some shortcuts that let
you avoid ugly constructs such as

$tax = $tax + 1;

When you need to increase the value of a
variable by 1 (called an incremental adjust-
ment) or decrease the value of a variable
by 1 (a decremental adjustment), you can
use ++ or --, respectively:

$var = 20; // 20
$var++; // 21
$var++; // 22
$var--; // 21

Solely for the sake of testing this concept,
you'll rewrite the handle_calc.php script
one last time.

To increment the value of a variable:

1. Openhandle_calc.php inyour text editor
or IDE (Script 4.4).

2. Change the tax rate calculation from
Script 4.3 to read as follows (Script 4.5):
$taxrate = $tax/100;
$taxrate++;

The first line calculates the tax rate as the
$tax value divided by 100. The second line
increments this value by 1 so that it can
be multiplied by the total to determine
the total with tax.

Script 4.5 Incrementing or decrementing a number is

a common operation using ++ or - -, respectively.

eece = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<meta http-equiv="Content-Type"

|

|

|

|

|

|

|

|

|

| 4 <head>
|

|5

: content="text/html; charset=utf-8"/>
|

|

|

|

|

6 <title>Product Cost Calculator</title>
7 <style type="text/css" media="screen">
8 .number { font-weight: bold;}

:9 </style>

:1@ </head>

11 <body>

12 <?php // Script 4.5 - handle_calc.php #4

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $_POST array:

19 $price = $_POST['price'];

20 $quantity = $_POST['quantity'];

21 $discount = $_POST['discount'];

22 $tax = $_POST['tax'];

23 $shipping = $_POST['shipping'];

24 $payments = $_POST['payments'];

25

26 // Calculate the total:

27 $total = (($price * $quantity) +
$shipping) - $discount;

28

29 // Determine the tax rate:

30 $taxrate = $tax/100;

31 $taxrate++;

32

33 // Factor in the tax rate:

34 $total = $total * $taxrate;

35

36 // Calculate the monthly payments:

37 $monthly = $total / $payments;

38

(script continues on next page)

84

Using Numbers

Script 4.5 continued
8oe) Script

39 // Apply the proper formatting.

40 $total = number_format ($total, 2);

41 $monthly = number_format ($monthly, 2);

42

43 // Print out the results:

44 print "<div>You have selected to
purchase:

45 $quantity
widget(s) at

46 $$price
price each plus a

47 $$shipping
shipping cost and a

48 $tax
percent tax rate.

49 After your $
$discount discount, the total
cost is

50 $$total
.

51 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p></div>";

52

53 7>

54 </body>
55 </html>

® OO Product Cost Calculator =
[htp://localhost/calculator.html 17 ¥

Fill out this form to calculate the total cost:

Price: W

Quantity: UT

Discount: W

Tax: T| (%)

Shipping method:

Number of payments to make: |10

Figure 4.9 The last execution of the form.

3. Save the script, place it in the same direc-
toryas calculator.html, and testitin
your browser (Figures 4.9 and 4.10).

v Tips

B Although functionally it doesn't matter
whether you code $taxrate = $taxrate
+ 1; or the abbreviated $taxrate++, the
latter method (using the increment opera-
tor) is more professional and common.

B In Chapter 6, “Control Structures,” you'll
see how the increment operator is com-
monly used in conjunction with loops.

B PHP also supports a combination of
mathematical and assignment operators.
These are +=, - =, *=,and /=. Each will
assign a value to a variable by performing
a calculation upon it. For example:
$tax = 5;
$tax /= 100; // Now $tax is .05
$tax +=1; // 1.05

800 Product Cost Calculator (=)
) (hitp: //localhost/handle_calc.php {,]'v

You have selected to purchase:

100 widget(s) at

$5.00 price each plus a

55.00 shipping cost and a

7.5 percent tax rate.

After your $10.00 discount, the total cost is $532.13.

Divided over 10 monthly payments, that would be $53.21 each.

Figure 4.10 It won’t affect your calculations if you use
the long or short version of incrementing a variable
(compare Scripts 4.4 and 4.5).

85

YJIGWNN V ONILNIWIUIIQ ANV ONILNIWIADN|

CREATING RANDOM NUMBERS

Chapter 4

Creating Random Numbers

The last function you'll learn about here is
rand(), arandom-number generator:

$n = rand(); // 31
$n = rand(); // 87

The rand() function can also take minimum
and maximum parameters, if you prefer to
limit the generated number to a specific range:

$n = rand (0, 10);

These values are inclusive, so in this case 0
and 10 are feasible returned values.

As an example of generating random num-
bers, let’s create a simple “Lucky Numbers”
script.

To generate random numbers:

1. Begin anew document in your text editor
or IDE (Script 4.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Lucky Numbers</title>
</head>
<body>

2. Include the PHP tags and address error
management, if you need to:

<?php // Script 4.6 - random.php

Script 4.6 The rand() function generates random
numbers.

8086 = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Lucky Numbers</title>

7 </head>

8 <body>

9 <?php // Script 4.6 - random.php

10 /* This script generates 3 random
numbers. */

11

12 // Address error handling, if you want.

13

14 // Create three random numbers:

15 $nl = rand (1, 99);

16 $n2 = rand (1, 99);
17 $n3 = rand (1, 99);
18

19 // Print out the numbers:

20 print "<p>Your lucky numbers are:

21 $nl

22 $n2

23 $n3</p>";
24

25 7>

26 </body>
27 </html>

86

Using Numbers

e Lucky Numbers =

‘ “ http://localhost/random.php {,‘{ vh

Your lucky numbers are:
96
80
56

Vi

Figure 4.11 The three random numbers created by
invoking the rand() function.

00 Lucky Numbers (=]

‘ i http://localhost/random.php {,‘{vh

Your lucky numbers are:
19
27
95

Figure 4.12 Running the script again produces
different results.

. Create three random numbers:

$nl = rand (1, 99);

$n2 = rand (1, 99);

$n3 = rand (1, 99);

This script prints out a person’s lucky
numbers, like those found on the back of
a fortune cookie’s fortune. These numbers
are generated by calling the rand() func-
tion three separate times and assigning

each result to a variable.

. Print out the numbers:

print "<p>Your lucky numbers

are:

$nl

$n2

$n3</p>";
The print() statement is fairly simple.
The numbers are printed, each on its own
line, by preceding them with an HTML
break tag.

. Close the PHP code and the HTML page:

7>
</body>
</html>

. Save the file as random. php, place it in the

proper directory for your PHP-enabled
server, and test it in your Web browser
(Figures 4.11 and 4.12).

87

SYFGWNN WOANVYY SNILYIY)

CREATING RANDOM NUMBERS

Chapter 4

v

Tips

The getrandmax() function returns the
largest possible random number that can
be created using rand(). This value differs
by operating system.

PHP has another function that generates
random numbers: mt_rand(). It works
similarly to (but, arguably, better than)
rand() and is the smarter choice for
sensitive situations like cryptography.
Also see the PHP manual’s page for the
mt_rand() function for more discussion
of the topic as a whole.

Other Mathematical Functions

PHP has a number of built-in functions
for manipulating mathematical data.
This chapter introduced round(),
number_format(), and rand().

PHP has broken round() into two other
functions. The first, ceil(), rounds every
number to the next highest integer. The
second, floor(), rounds every number to
the next lowest integer.

Another function the calculator page
could make good use of is abs (), which
returns the absolute value of a number. In
case you don't remember your absolute
values, the function works like this:

$number = abs(-23); // 23
$number = abs(23); // 23

In laymanss terms, the absolute value of a
number is always a positive number.

Beyond these functions, PHP supports
all the trigonometry, exponent, base
conversion, and logarithm functions
you'll ever need. See the PHP manual
for more information.

88

USING STRINGS

Asintroduced in Chapter 2, “Variables, the
second category of variables used by PHP is
strings—a collection of characters enclosed
within either single or double quotation
marks. A string variable may consist of a
single letter, a word, a sentence, a paragraph,
HTML code, or even a jumble of nonsensical
letters, numbers, and symbols (which might
represent a password). Strings may be the
most common variable type used in PHP.

Passwords, names, email addresses, com-
ments, and similar input from HTML forms all
become strings in your PHP script. You would
have witnessed this behavior if you tried the
feedback.html and handle_form.php pages
in Chapter 3, “HTML Forms and PHP”

This chapter covers PHP’s most basic built-in
functions and operators for manipulating
string data, regardless of whether the string
originates from a form or is first declared
within the script. Some common techniques
will be introduced—trimming strings, joining
strings together, and encoding strings. Other
uses for strings will be illustrated in subse-
quent chapters.

89

SONIYLS ONISN

CREATING THE HTML FOrRM

Chapter 5

Creating the HTML Form

As in Chapter 3, let’s begin by creating an
HTML form that sends different values—in
the form of string variables—to a PHP script.
The theoretical example being used is an
online bulletin board or forum where users
can post a message, their email address, and
their first and last names (Figure 5.1).

To create an HTML form:

1. Begin anew HTML document in your
text editor or IDE (Script 5.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Forum Posting</title>
</head>
<body>
<!-- Script 5.1 - posting.html -->
<div><p>Please complete this form to
submit your posting:</p>
2. Create the initial form tag:
<form action="handle_post.php"
method="post">
This form will send its data to a handle_
post.php script and will use the POST
method.

©J Forum Posting - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

Please complete thiz form to submmit your posting:

e
I

Email Address: |

Posting:

Send My Posting

Figure 5.1 This HTML form is the basis for most of the
examples in this chapter.

90

Using Strings

Script 5.1 This form sends string data to a PHP script.

ece = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

'3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>

:6 <title>Forum Posting</title>

|7 </head>

:8 <body>

|9 <!-- Script 5.1 - posting.html -->

:10 <div><p>Please complete this form to

submit your posting:</p>
11
12 <form action="handle_post.php"
method="post">

13

14 <p>First Name: <input type="text"
name="first_name" size="20" /></p>

15

16 <p>Last Name: <input type="text"
name="last_name" size="20" /></p>

17

18 <p>Email Address: <input type="text"
name="email" size="30" /></p>

19

20 <p>Posting: <textarea name="posting"
rows="9" cols="30"></textarea></p>

21

22 <input type="submit" name="submit"
value="Send My Posting" />

23

24 </form>

25 </div>

26 </body>

27 </html>

3. Addinputs for the first name, last name,

and email address:
<p>First Name: <input type="text"
name="first_name" size="20" /></p>
<p>Last Name: <input type="text"
name="last_name" size="20" /></p>
<p>Email Address: <input type="text"
name="email" size="30" /></p>
These are all basic text input types,
which were covered back in Chapter 3.
Remember that the various inputs' name
values should adhere to the rules of PHP
variable names (no spaces; must not
begin with a number; consists only of let-
ters, numbers, and the underscore).

Add an input for the posting:

<p>Posting: <textarea name="posting"
rows="9" cols="30"></textarea></p>

The posting field is a textarea, which is a

larger type of text input box.

Create a submit button and close

the form:

<input type="submit" name="submit"
value="Send My Posting" />

</form>

Every form must have a submit button (or

a submit image).

continues on next page

91

W¥04 TWLH IHL ONILYIN)

CREATING THE HTML FOrRM

Chapter 5

6.

v

Complete the HTML page:
</div>

</body>

</html>

Save the file as posting.html, place it in
the appropriate directory on your PHP-
enabled server, and view it in your Web
browser (Figure 5.1).

This is an HTML page, so it doesn't have
to be on a PHP-enabled server in order for
you to view it. But because it will eventu-
ally send data to a PHP script, it’s best to
go ahead and place the file on your server.

Tips

Many forum systems written in PHP are
freely available for your use. This book
doesn't discuss how to fully develop one,
but a multilingual forum is developed in
my PHP 6 and MySQL 5 for Dynamic Web
Sites: Visual QuickPro Guide (Peachpit
Press, 2007).

This book’s Web site has a forum where
readers can post questions and other
readers (and the author) answer ques-
tions. You can find it at

www . dmcinsights.com/phorum/
list.php?23

92

www.dmcinsights.com/phorum/list.php?23
www.dmcinsights.com/phorum/list.php?23

Using Strings

Connecting Strings
(Concatenation)

Concatenation is an unwieldy term but a use-
ful concept. It refers to the process of linking
items together. Specifically, in programming,
you concatenate strings. The period (.) is the
operator for performing this action, and it's
used like so:

$s1 = 'Hello, ';
$s2 = 'world!";
$greeting = $s1 . $s2;

The end result of this concatenation is that
the $greeting variable has a value of Hello,
world!.

Due to the way PHP deals with variables, the
same effect could be accomplished using

$greeting = "$s1$s2";

'This works because variables put within
double quotation marks are replaced with
their value when handled by PHP. However,
the formal method of using the period to
concatenate strings is more commonly used
and is recommended (it will be more obvious
what’s occurring in your code).

Another way of performing concatenation
involves the concatenation assignment
operator:

v

$greeting = 'Hello, ';
$greeting .= 'world!';

This second line roughly means “assign to
$greetingits current value plus the concat-
enation of world!’ The end result is $greeting
having the value Hello, world!

93

(NOILVYNILVYINO)) SONIYLS ONILIINNO)

CONNECTING STRINGS (CONCATENATION)

Chapter 5

The posting.html script sends several string
variables to the handle_post.php page. Of
those variables, the first and last names could
logically be concatenated. It's quite common
and even recommended to take a user’s first
and last names as separate inputs, as this
form does. On the other hand, it would be
advantageous to be able to refer to the two
together as one name. You'll write the PHP
script with this in mind.

To use concatenation:

1. Begin anew document in your text editor
or IDE (Script 5.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Forum Posting</title>
</head>
<body>

2. Create the initial PHP tag, and address
error management, if necessary:
<?php // Script 5.2 - handle_post.php
If you don't have display_errors enabled,
oriferror_reportingis set to the wrong
level, see Chapter 3 for the lines to include
here to alter those settings.

Script 5.2 This PHP script demonstrates concatenation,
one of the most common manipulations of a string
variable. Think of it as addition for strings.

eece = Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

|

|

:

:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
:6 <title>Forum Posting</title>

|7 </head>

| 8 <body>

|19 <?php // Script 5.2 - handle_post.php

:10 /* This script receives five values from
posting.html:

11 first_name, last_name, email, posting,
submit */

12

13 // Address error management, if you want.

14

15 // Get the values from the $_POST array:

16 $first_name = $_POST['first_name'];

17 $last_name = $_POST['last_name'];

18 $posting = $_POST['posting'];

19

20 // Create a full name variable:

21 $name = $first_name . ' ' . $last_name;
22

23 // Print a message:

24 print "<div>Thank you, $name, for your

posting:
25 <p>$posting</p></div>";
26
27 7>
28 </body>
29 </html>

94

Using Strings

©) Forum Posting - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,l’posting.htmI {_\j v|

Please complete thiz form to submit your posting:

Fit M [y]
Lo N Vassarsmin |

Ermal Address: |jm@examp|e.com

This is my posting. It could he
more original.

Posting:

Send My Posting

Figure 5.2 The HTML form in use...

3 Forum Posting - Mozilla Firefox

File Edit ‘Wiew History Bookmarks Tools Help

Thanl vou, Jeremy Messersmuth, for your posting:

(|j |http:,l',l'localhost:BDDD,I'handlejost.php

This 15 my posting. It could be more origmal.

Figure 5.3 ...and the resulting PHP page.

3.

Assign the form data to local variables:
$first_name = $_POST['first_name'];
$last_name = $_POST['last_name'];
$posting = $_POST['posting'];

The form uses the POST method, so all of
the form data will be available in $_POST.

This example doesn't have a line for the
email address because you won't be using
it yet, but you can duplicate this code to
reference that value as well.

Create anew $name variable using
concatenation:

$name = $first_name . ' '
$last_name;

This act of concatenation takes two
variables plus a space and joins them all
together to create a new variable, called
$name. Assuming you entered Elliott and
Smith as the names, then $name would be
equal to Elliott Smith.

. Print out the message to the user:

print "<div>Thank you, $name, for
your posting:
<p>$posting</p></div>";

This message reports back to the user
what was entered in the form.

. Close the PHP section and complete the

HTML page:
7>

</body>
</html>

. Save your script as handle_post. php,

place it in the same directory as posting.
html (on your PHP-enabled server), and
test both the form and the script in your
Web browser (Figures 5.2 and 5.3).

As areminder, you must load the form
through a URL (http://something) so that,
when the form is submitted, the handling
PHP script is also run through a URL.

95

(NOILVYNILVYINO)) SONIYLS ONILIINNO)

CONNECTING STRINGS (CONCATENATION)

Chapter 5

v Tips

B Ifyouused quotation marks of any kind in
your form and saw extraneous slashes in
the printed result, see the sidebar “Magic
Quotes” in Chapter 3 for an explanation of
the cause and for the fix.

B Asareminder, it’s very important to
understand the difference between single
and double quotation marks in PHP.
Characters within single quotation marks
are treated literally; characters within
double quotation marks are interpreted
(for example, a variable’s name will be
replaced by its value). See Chapter 3 for
arefresher.

B You can link as many strings as you want
using concatenation. You can even join
numbers to strings:

$new_string = $s1 . $s2 . $number;

'This works because PHP is weakly typed,
meaning that its variables aren't locked
in to one particular format. Here, the
$number variable will be turned into a
string and appended to the value of the
$new_string variable.

B All form data, aside from uploaded files, is
sent to the handling script as strings. This
includes numeric data entered into text
boxes, options selected from drop-down
menus, checkbox or radio button values,
and so forth.

B Concatenation can be used in many ways,
even when youre feeding arguments to a
function. An uncommon but functional
example would be

print 'Hello, ' . $first_name . "!';

96

Using Strings

) Forum Posting - Mozilla Firefox

File Edit VWiew History Bookmarks Tools Help

l: |j |http:,l’,l’localhost:BDDD,l’posting.htmI ﬁ v|

Please complete this form to submit your posting

First Iame: |R0cky |

Last Mame: |VDt0IatD |

Ermail Address: |N@examp|e.cum

Here's one line.

Here's another line.

Here's a third line.

Posting:

Send My Posting

Figure 5.4 Newlines in form data like textareas...

©J Forum Posting - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

(|j |http:,I',I'|Dca|h05t:SUUU,fhand|EJJDSt.DhD {_\j v|

Thank: you, BEocky Votolato, for vour posting:

Here's one line. Here's another line. Here's a third line.

Figure 5.5 ...are not rendered by the Web browser.

Handling Newlines

A common question beginning PHP develop-
ers have involves newlines in strings. A user
can enter text over multiple lines in a form
element by pressing Return or Enter. Each
use of Return or Enter equates to a newline
in the resulting string. These newlines work
within a textarea but have no effect on a ren-
dered PHP page (Figures 5.4 and 5.5).

To create the equivalent of newlines in a
rendered Web page, you would use the break
tag:
.Fortunately, PHP has the n12br()
function that automatically converts new-
lines into break tags:

$var = n12br($var);

Let's apply this to handle_post . php so that
the user’s posting retains its formatting.

97

SANITMIN SNITANVH

HANDLING NEWLINES

Chapter 5

To convert newlines:

1. Openhandle_post.php (Script 5.2) in
your text editor, if it is not already.

2. Apply the n12br() function when assign-
ing a value to the $posting variable
(Script 5.3):
$posting = n12br($_POST['posting']);
Now $posting will be assigned the value
of $_POST['posting'], with any newlines
converted to HTML break tags.

3. Save thefile, place it in the same directory
as posting.html (on your PHP-enabled
server), and test again in your Web
browser (Figure 5.6).

v Tips

B Newlines can also be inserted into strings
by placing the newline character—\n—
between double quotation marks.

B Other HTML tags, like paragraph tags,
also affect spacing in the rendered Web
page. You can turn newlines (or any
character) into paragraph tags using a
replace function, but the code for doing
so is far more involved than just invoking
n12br().

©J Forum Posting - Mozilla Firefox

File Edit “iew History Bookmarks Tools Help
Thank: you, Eocky Votolato, for your posting:

Here's one line.

Here's another line.

Here's a third line.

Figure 5.6 Now the same submitted data as seen in
Figure 5.4 is properly displayed.

Script 5.3 By using the n12br() function, newlines
entered into the posting textarea are honored when
displayed in the Web browser.

8080 2 Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
: 1.0 Transitional//EN"

|2 "http://www.w3.org/TR/xhtml11/DTD/

| xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
|

|6 <title>Forum Posting</title>
|7 </head>
| 8 <body>

|9 <?php // Script 5.3 - handle_post.php #2

|10 /* This script receives five values from
posting.html:

11 first_name, last_name, email, posting,
submit */

12

13 // Address error management, if you want.

14

15 // Get the values from the $_POST array:

16 $first_name = $_POST['first_name'];

17 $last_name = $_POST['last_name'];

18 $posting = nl2br($_POST['posting']);

19

20 // Create a full name variable:

21 $name = $first_name . ' '

22

23 // Print a message:

. $last_name;

24 print "<div>Thank you, $name, for your

posting:
25 <p>$posting</p></div>";
26
27 7>
28 </body>
29 </html>

98

Using Strings

©3 Forum Posting - Mozilla Firefox

File Edit Wiew History Bookmarks Tools

Help

(|j |http:,l’,l’localhost:SDDD,I’posting.htmI

Fiost e D
Lotame e |

Pleaze complete this form to submut your posting:

Email Address: |dr@examp|e.com

Posting:

Let's wake an ordered list:

Send My Posting

Figure 5.7 If the user enters HTML code in the
posting...

) Forum Posting - Mozilla Firefox
Edit Bookmarks

File Wiew History

(|;D| |http:,l',l'localhost:BDDD,I'handIeJ:ost.php

77 -]

Let's make an ordered hist:

* Something
& Something Else

* Something Mew

Thank: you, Darmten Rice, for your posting:

Figure 5.8 ...it’s rendered by the Web browser when

reprinted.

HTML and PHP

As I've said several times over by now, PHP
is a server-side technology that's frequently
used to send data to the Web browser. This
data can be in the form of plain text, HTML
code, or both.

In this chapter’s primary example, data is
entered in an HTML form and then printed
back to the Web browser using PHP. A poten-
tial problem is that the user can enter HTML
characters in the form, which can affect the
resulting page’s formatting (Figures 5.7 and
5.8)—or, worse, cause security problems.

Because of the relationship between HTML
and PHP, you can use a couple of PHP func-
tions to manipulate HTML tags within PHP
string variables:

& htmlspecialchars() turns certain HTML
tags into an entity version.

¢ htmlentities() turnsall HTML tags into
their entity versions.

& strip_tags() removes all HTML and
PHP tags.

The first two functions turn an HTML tag
(for example,) into an entity version
like &1t ; span> ;. The entity version appears
in the output but isn't rendered. You might
use either of these if you wanted to display
code without enacting it. The third function,
strip_tags(), removes HTML and PHP

tags entirely.

929

dHd aNv TW1H

HTML AND PHP

Chapter 5

You ought to watch for special tags in user-
provided data for two reasons. The first, as
already mentioned, is that submitted HTML
would likely affect the rendered page (e.g.,
mess up a table, tweak the CSS, or just add
formatting where there shouldn't be any).
The second concern is more important.
Because JavaScript is placed within HTML
tags, a malicious user could submit JavaScript
that would be executed when it’s redisplayed
on the page. This is how cross-site scripting
(XSS) attacks are performed.

To see the impact these functions have, this
next rewrite of handle_post. php will use
them each and display the respective results.

To work with HTML and PHP:

1. Openhandle_post.php (Script 5.3) in
your text editor or IDE, if it is not already.

2. Before the print() line, add the following

lines (Script 5.4):

$html_post = htmlentities($_POST
['posting'1);

$strip_post = strip_tags($_POST
['posting’1);

To clarify the difference between how these

two functions work, apply them both to

the posting, creating two new variables in

the process. I refer to $_POST['posting']

here and not $posting because $posting

already reflects the application of the

n12br() function, which means that

break tags may be introduced that were

not explicitly entered by the user.

Script 5.4 This version of the PHP script addresses
HTML tags in two different ways.

8086 = saript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

| 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

w

<head>

Ul A

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>

</head>

<body>

<?php // Script 5.4 - handle_post.php #3

@ /* This script receives five values from
posting.html:

= W 0 N O

11 first_name, last_name, email, posting,
submit */

12

13 // Address error management, if you want.

14

15 // Get the values from the $_POST array:

16 $first_name = $_POST['first_name'];

17 $last_name = $_POST['last_name'];

18 $posting = nl2br($_POST['posting']);

19

20 // Create a full name variable:

21 $name = $first_name . ' ' . $last_name;

22

23 // Adjust for HTML tags:

24 $html_post = htmlentities($_POST
['posting'1);

25 $strip_post = strip_tags($_POST
['posting’'D);

26

27 // Print a message:

28 print "<div>Thank you, $name, for your
posting:

29 <p>$posting</p>

30 <p>$html_post</p>

31 <p>$strip_post</p></div>";

32

33 7>

34 </body>
35 </html>

100

Using Strings

©) Forum Posting - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

l: |j |http:,l’,l’localhost:SDDD,l’posting.htmI ﬁ v|

Please complete this form to submit your posting:

First Mame: |Jane |

Last Mame: |Reader |

Email &ddress: |jane@example.com

I don't understand why it says
something</ ems.

Posting:

Send My Posting

Figure 5.9 The HTML characters you enter as part of a
posting will now be addressed by PHP.

©) Forum Posting - Mozilla Firefox

File Edit ‘iew Historw Bookmarks Tools Help

l: |j |httD:,I',I'|0Ca|h05t:SUUU,I'hanC"EJJDSt.DhD ‘]'::f v|

Thank you, Jane Feader, for your posting;
T don't understand why it savs sometbing.
I don't understand why it savs <em=something=/em>.

I don't understand why it says something,

Figure 5.10 The resulting PHP page shows the original
post as it would look if printed without modification,
the effect of htmlentities(), and the effect of
strip_tags().

3. Alter the print statement to read
as follows:

print "<div>Thank you, $name, for
your posting:
<p>$posting</p>
<p>$html_post</p>
<p>$strip_post</p></div>";
To highlight the different results, print out
the three different versions of the post-
ings. First is the original posting as it was
entered, followed by the htmlentities()
version of the posting. It will show the
HTML tags without rendering them.
Finally, the strip_tags() version will be
printed; it doesn't include any HTML (or
PHP) tags.

4. Save the file, place it in the same directory
as posting.html (on your PHP-enabled
server), and test it again in your Web
browser (Figures 5.9 and 5.10).

continues on next page

101

dHd aNv TW1H

HTML AND PHP

Chapter 5

If you view the HTML source code of the
resulting PHP page (Figure 5.11), you'll
also see the effect that applying these
functions has.

v Tips

For security purposes, it's almost always a
good idea to use htmlentities(), html-
specialchars(), or strip_tags() to any
user-provided data that’s being printed to
the Web browser.I don't do so through the
course of this book only to minimize clutter.

The html_entity_decode() function
does just the opposite of htmlentities(),
turning HTML entities into their respec-
tive HTML code.

Another useful function for outputting
strings in the Web browser is wordwrap().
This function wraps a string to a certain
number of characters.

To turn newlines into breaks while still
removing any HTML or PHP tags, apply
nl2br() after strip_tags():

$posting = nl2br(strip_tags($_POST

['posting'1));

In that line, the strip_tags() function
will be called first, and its result will be
sent to the n12br() function.

©) Source of: http:/localhost: B000/handle_post.php - Mozilla Firefox
File Edit wiew Help

<!DOCTYPE khiml PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http: S v, Wi, org/ TR xhiml 1/DTD ghitml 1—transitional. did">
<html smlns="http://urw.wi.org/ 1999/ xhtml™ xml:lang="c=n" lang="en":>
<head>

<title>Forum Posting</titlex
</head>
<bhody:>
<div>Thank wou, Jane Reader, for your posting:
<p>I don't understand vhy it says <emrsomething</ems.</p>
<p>I don't understand why it says <emégt;:somethingselo:/emegt; . </p>
<p>I don't understand why it sayz something.</pr</div></hody>
</html>

<meta http-equiv="Content-Type" content="text/html:; charset=utf-s"/ >

Figure 5.11 The HTML source for the content displayed in Figure 5.10.

102

Using Strings

Script 5.5 This script encodes two variables before
adding them to a link. This way, the variables are
successfully passed to the other page.

CXeXG) 2 seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Forum Posting</title>

7 </head>

|8 <body>

9 <?php // Script 5.5 - handle_post.php #4

110 /* This script receives five values from
posting.html:

11 first_name, last_name, email, posting,
submit */

12

14

15 // Get the values from the $_POST array:
16 $first_name = $_POST['first_name'];

17 $last_name = $_POST['last_name'];

18 $posting = nl2br($_POST['posting']);

19

20 // Create a full name variable:

21 $name = $first_name .
22

23 // Print a message:

' ' . $last_name;

24 print "<div>Thank you, $name, for your
posting:

25 <p>$posting</p></div>";

26

27 // Make a link to another page:

28 $name = urlencode($name);

29 $email = urlencode($_POST['email']);

30 print "<p>Click <a href=\"thanks.php?
name=$name&email=$email\">here to
continue.</p>";

31

32 7>

33 </body>
34 </html>

13 // Address error management, if you want.

Encoding and
Decoding Strings

At the end of Chapter 3, the section
“Manually Sending Data to a Page” dem-
onstrates how to use the thinking behind
the GET method to send data to a page by
appending it to the URL. At that time, you
used this technique to send a variable with
a single word value. But what if you want to
pass several words as one variable value?

In these instances you can use the
urlencode() function. As its name
implies, this function takes a string and
encodes it (changes its format) so that it
can properly be passed as part of a URL.
The function replaces spaces with plus
signs (+) and translates special characters
(for example, the apostrophe) into less
problematic versions. To use this function,
you might code:

$string = urlencode($string);

To demonstrate one application of
urlencode(),let’s rewrite the handle_
post.php page, adding a link that passes
the user’s name and email address to

a third page.

To use urlencode():

1. Open handle_post.php (Script 5.4) in
your text editor or IDE, if it is not already.

2. Delete the htmlentities() and strip_
tags() lines added in the previous set of
steps (Script 5.5).

3. Revert to the older version of the print()
invocation.

continues on next page

103

SONIILS 9NIAOJ23 ([ANV SNIAODN]

ENCODING AND DECODING STRINGS

Chapter 5

4. After the print statement, add the

: ©) Forum Posting - Mozilla Firefox
following; File Edit

Yiew History Bookmarks Tools Help

$name = urlencode($name); ([[hetpifflocalhost:z000/posting bt 77 -]
$email = urlencode($_POST['email']);
'This script will pass these two variables to
a second page. In order for it to do so, they First Nare: | Christapher |
must both be encoded.

Please complete this form to submit your posting;

Last Mame: |O'Ri|ey |

Because you haven't previously referred
to or used the $email variable, the second Emmadl Address: chris.oriley@example.com
line both retrieves the email value from

L. Nothing like a piano cover of
the $_POST array and encodes it in one Radichead or Eliott Smith!

step. This is the same as having these two
separate lines:

$email = $_POST['email'];

$email = urlencode($email);

5. Add another print statement that creates Fosting
the lnk:
print "<p>Click <a href=\"thanks.php

?name=$name&email=$email\">here Figure 5.12 Another use of the form.
 to continue.</p>";

The core purpose of this print() state-) Forum Posting - Mozilla Firefox A=1E3
ment is to create an HTML link in the File Edt Yiew History Bookmarks Tools Help
Web page, the source code of which ([| hetpisflocaihost:zaaojhandie_post php N

would be SomEthlng like Thank you, Christopher O'Riley, for your posting;

<a href="thanks.php?name=Larry+

Ullman&email=larry%4@example. Mothing ke a piano cover of Radiohead or Eliott Smith|

com">here Click here to continme.
To accomplish this, you begin by hard-
coding most of the HTML and then Figure 5.13 The handling script now displays a link to
include the appropriate variable names. another page.

Because the HTML code requires that
the URL for the link be in double quota-
tion marks—and the print() statement
already uses double quotation marks—
you must escape them in order for them
to be printed.

6. Save the file, place it in the proper direc-
tory of your PHP-enabled server, and test
it again in your Web browser (Figures
5.12 and 5.13).

104

Using Strings

) Forum Posting, - Mozilla Firefox |
File Edit ‘“iew History Bookmarks Tools Help

I: ﬁ |http:,I',I'|Dca|h05t:SUUU,fhand|EJJDSt.DhD ﬁ v|

Thank you, Christopher O'Riley, for your posting:
Nothing like a plano cover of Radiohead or Eliott Smith!
Warning: urlencode() expects parameter 1 to be strictly
a binary string, Unicode string given in C:'Program

line 28

Warning: urlencode() expects parameter 1 to be strictly

a binary string, Unicode string given in C:'\Program
line 29

Click here to contimue.

Files'Abyss Web Server'htdocs'handle_post.php on

Files'Abyss Web Server'htdocs'handle_post.php on

Figure 5.14 These error messages are due to a
change in PHP 6, still being worked out at the time
of this writing (see the sidebar).

urlencode() and PHP 6

At the time of this writing, PHP 6 is still in

development, as it has been for some time.

Some things, like the urlencode() func-
tion, are still being finalized. When I ran
this example, I saw the warnings shown
in Figure 5.14. To fix this, you'll need to
change two lines in the script to:

$name = urlencode((binary) $name);
$email = urlencode((binary)
$_POST['email']);

In short, this code converts the strings to
a binary format so that they can be used
in the urlencode() function. The primary
reason I didn't put this code into the
printed script already is that it won't work
ifyoure using a version of PHP before
5.2.1. Also, it’s likely that the urlencode()
function will change before PHP 6 is offi-
cially released.

If you see a PHP warning about the
urlencode() function expecting the

first parameter to be a binary string
(Figure 5.14), see the sidebar for the
cause and solution.

Also note that clicking the link will result
in a server error, as that other PHP script
hasn't yet been written.

. View the HTML source code of the han-

dling page to see the resulting link in the
HTML code.

v Tips

The urldecode() function does just the
opposite of urlencode()—it takes an
encoded URL and turns it back into a
standard form. You'll use it less frequently,
though, as PHP will automatically decode
most values it receives.

Since you can use concatenation with
functions, the new print() statement
could be written as follows:

print 'Click <a href="thanks.php?

name=' . $name . '&email='

$email . '">here to continue.';
This method has two added benefits.
First, it uses single quotation marks to
start and stop the statement, meaning
you don't need to escape the double quo-
tation marks. Second, the variables used
are more obvious—they aren’t buried in a
lot of other code.

You do not need to encode numeric PHP
values in order to use them in a URL, as
they do not contain problematic char-
acters. That being said, it won't hurt to
encode them either.

105

SONIILS 9NIAOJ23 ([ANV SNIAODN]

ENCODING AND DECODING STRINGS

Chapter 5

Justin case it’s not clear, let’s quickly write the
thanks . php page to which users are directed
when they click the link in handle_post.php
(see Figure 5.13).

To write thanks.php:

1.

2.

3.

Begin a new document in your text editor
or IDE (Script 5.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Thanks!</title>
</head>
<body>

Create the initial PHP tag:
<?php // Script 5.6 - thanks.php

Assign the values to local variables:

$name = $_GET['name'];

$email = $_GET['email'];

Because the variable values will come from
the URL and not from an HTML form
using the POST method, you use $_GET
instead of $_POST to access the values.
Print out a simple message:

print "<p>Thank you, $name. We will
contact you at $email.</p>";

©J Thanks! - Mozilla Firefox

Script 5.6 The thanks.php script prints a greeting
based on two values it receives in the URL.

8eee = Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:2 "http://www.w3.0rg/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>

|6 <titles>Thanks!</title>

|7 </head>

:8 <body>

|9 <?php // Script 5.6 - thanks.php

:10 /* This is the page the user sees after
clicking on the link in handle_post.php
(Script 5.5).

11 This page receives name and email
variables in the URL. */

12

13 // Address error management, if you want.

14

15 // Get the values from the $_GET array:

16 $name = $_GET['name'];

17 $email = $_GET['email'];

18

19 // Print a message:

20 print "<p>Thank you, $name. We will
contact you at $email.</p>";

21

22 7>

23 </body>

24 </html>

File Edit Wiew History Bookmarks Tools

(|j |http:,l’,l’localhost:SDDD,l’thanks.php?name=Christopher+O'RiIey&emaiI=chris.oriley%‘mexample.com

v -

Thank you, Christepher C'Riley. We will contact you at chns. onley@ezample. com.

Figure 5.15 The third page in this process prints a message based on values it receives

in the URL.

106

Using Strings

5. Complete the PHP code and the
HTML page:
7>
</body>
</html>

6. Save the page as thanks.php, place it in
the same directory as posting.html and
handle_post.php, and test it in your Web
browser by clicking the link in handle_
post.php (Figure 5.15).

v Tip

B Values sent directly from a form are
automatically URL-encoded prior to
being sent and decoded upon arrival
at the receiving script. You only need
the urlencode() function to manually
encode data (as in the example).

Encrypting and Decrypting Strings

Frequently, in order to protect data, programmers encrypt it—alter its state by transforming it
to a form that’s more difficult, if not virtually impossible, to discern. Passwords are an example
of a value you might want to encrypt. Depending on the level of security you want to establish,
usernames, email addresses, and phone numbers are likely candidates for encryption, too.

You can use the crypt() function to encrypt data, but be aware that no decryption option is
available (it's known as one-way encryption). So, a password may be encrypted using it and
then stored, but the decrypted value of the password can never be determined. Using this func-
tion in a Web application, you might encrypt a user’s password upon registration; then, when
the user logged in, the password they entered at that time would also be encrypted, and the
two protected versions of the password would be compared. The syntax for using crypt() is

$data = crypt($data);

A second encryption function is mcrypt_encrypt(), which can be decrypted using the appro-
priately named mcrypt_decrypt() function. Unfortunately, in order for you to be able to use
these two functions, the Mcrypt extension must be installed with the PHP module. Its usage
and syntax is also more complex (I discuss it in my PHP 5 Advanced: Visual QuickPro Guide
[Peachpit Press, 2007]).

If the data is being stored in a database, you can also use functions built into the database
application (for example, MySQL, PostgreSQL, Oracle, or SQL Server) to perform encryption
and decryption. Depending on the technology you'e using, it most likely provides both one-
way and two-way encryption tools.

107

SONIILS 9NIAOJ23 ([ANV SNIAODN]

FINDING SUBSTRINGS

Chapter 5

Finding Substrings

PHP has a few functions you can use to pull
apart strings, search through them, and
perform comparisons. Although these func-
tions are normally used with conditionals,
discussed in Chapter 6, “Control Structures,”
they are important enough that I want to
introduce them here; later chapters will use
them more formally.

Earlier in this chapter you learned how to join
strings using concatenation. Besides making
larger strings out of smaller pieces, you can
also extract subsections of a string (which is
to say, tokenize them). The trick to using any
method to pull out a subsection of a string

is that you must know something about the
string itself'in order to do so effectively.

The strtok() function creates a substring,
referred to as a token, from a larger string
by using a predetermined separator (such
as a comma or a space). For example, if you
have users enter their full name in one field
(presumably with their first and last names
separated by a space), you can ascertain
their first name with this code:

$first = strtok($_POST['name'], ' ');

This line tells PHP to pull out everything from
$_POST['name'] until it finds a blank space.

If you have users enter their full name in the
format Surname, First, you can find their
surname by writing;

$last = strtok($_POST['name'], ', ');

A second way to pull out sections of a string
is by referring to the indexed position of the
characters within the string. The index of a
string is the numerical location of a charac-
ter, counting from the beginning. However,
PHP—like most programming languages—
begins all indexes with the number @. For
example, to index the string Larry, you begin

108

Using Strings

Comparing Strings

To compare two strings, you can
always use the equality operator, which
you'll learn about in the next chapter.
Otherwise, you can use these functions:

¢ strcmp() indicates how two strings
compare by returning a whole number.

& strnatcmp() is similar but linguisti-
cally more precise.

These also have case-insensitive compan-
ions, strcasecmp() and strnatcasecmp().

To see if a substring is contained within
another string (i.e., to find aneedle in a
haystack), you'll use these functions:

& strstr() returns the haystack from
the first occurrence of a needle to the
end.

& strpos() searches through a haystack
and returns the numeric location of a
particular needle.

Both of these functions also have a case-
insensitive alternative: stristr() and
stripos(), respectively. Each of these
functions is normally used in a conditional
to test if the substring was found.

with the L at position @, followed by a at 1, r
at 2, the second r at 3, and y at 4. Even though
the string length of Larryis 5, its index goes
from @ to 4 (i.e., indexes always go from @ to
the string’s length minus 1).

With this in mind, you can utilize the
substr() function to create a substring
based on the index position of the substring’s
characters, like this:

$sub = substr($string, 0, 10);

The first argument is the master string from
which your substring will be derived. Second,
indicate where the substring begins, as its
indexed position (@ means that you want to
start with the first character). Third, from
that starting point, state how many char-
acters the substring is composed of (10). In
this case, if $string isn't 10 characters long,
the resulting $sub will end with the end of
$string.

You can also use negative numbers to count
from the end of the string;

$string = 'ardvark';
$sub = substr($string, -3, 3); // ark

The second line says that three characters
should be returned starting at the third char-
acter from the end.

To see how many characters are in a string,
use strlen():

print strlen('Hello, world!'); // 13

That count will include spaces and punctua-
tion. To see how many words are in a string,

use str_word_count(). This function, along

with substr(), will be used in this next revi-
sion of the handle_post. php script.

109

SONIYLSANS ONIANI]

FINDING SUBSTRINGS

Chapter 5

To create substrings: Script 5.7 This version of handle_post.php counts
the number of words in the posting and trims the
1. Openhandle_post.php (Script 5.5) in displayed posting down to just the first 50 characters.
your text editor or IDE, if it is not already. 8o0e 2 saript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

2. Before the print statement, add the fol-
lowing (Script 5.7):
$words = str_word_count($posting);
In this version of the script, Id like to do
two things with the user’s posting. One
will be to display the number of words it
contains. That information is gathered
here, and assigned to the $words variable.

4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Forum Posting</title>
3. On the next line (also before the print 7 </head>
statement), add: |8 <body>
$posting = substr($posting, 0, 50); |9 <?php // Script 5.7 - handle_post.php #5

|10 /* This script receives five values from

The second thing I want this script to do
posting.html:

is limit the displayed posting to its first

. . 11 first_name, last_name, email, posting,
fifty characters. You might use this, for P J

. o submit */
example, if one page shows the beginning .
ofa pOSF, then ajhnk takes the‘ us'er'to the 13 // Address error management, if you want.
full posting. To implement this limit, the 14

substr() function is called. 15 // Get the values from the $_POST array:

16 $first_name = $_POST['first_name'];
17 $last_name = $_POST['last_name'];

18 $posting = nl2br($_POST['posting']1);
19

20 // Create a full name variable:

21 $name = $first_name . ' '
22

23 // Get a word count:

24 $words = str_word_count($posting);
25

26 // Get a snippet of the posting:

27 $posting = substr($posting, 0, 50);
28

29 // Print a message:

. $last_name;

30 print "<div>Thank you, $name, for your
posting:

31 <p>$posting...</p>

32 <p>($words words)</p></div>";

33

34 7>

35 </body>
36 </html>

110

Using Strings

4. Update the print statement to read:

©) Forum Posting - Mozilla Firefox =118
File Edit “iew History Bookmarks Tools Help pr‘int "<div>Thank you, $nClme, for

l: O |http:,l’,l’localhost:SDDD,l’posting.html g v| your posting:
<p>$posting...</p>

Please complete this form to submit your posting: <p>($words words)</p></divs";
)

First Narme: |Reginﬂ | There are two changes here. First, ellipses
are added after the posting to indicate

| that this is just part of the whole post-

Enail Address: rs@example.com ing. Then, within another paragraph, the

number of words is printed.

Last Iame: |Spekt0r

This is a longer post. o]

This i= a longer post. This 5. Delete the two urlencode() lines and the

iz a longer post. This is a . . .

longer post. This is a longer 3 COI'I'ESpOI]leg pr‘lnt()hne.

post. This is a longer post. r o .

Thiz is a longer post. This 6. Save the file, place it in the proper direc-

is a longer post. This is a [tory of your PHP-enabled server, and test

longer post. This is a longer X 7 A

post. This is a longer post. it again in your Web browser (Figures
Posti.ng: This i=s a longer post. This el 5.16 and 5-17)

Send My Posting (4 Tip

B Ifyou want to check whether a string
matches a certain format—for example, to
see ifit’s a valid email address—you need
to use regular expressions. Regular expres-
sions are an advanced concept in which

Figure 5.16 Postings longer than 50 characters...

) Forum Posting - Mozilla Firefox E]

File Edit Wew History Bookmarks Tools Help

(13 [eptfocahostis000 handie_post.oh 7 -] you define patterns and then see if a value
HJiocalnost: anadle_post, -
£ LA fits the mold. See Chapter 13, “Regular
Thank you, Regina Spektor, for your posting: Expressions; for more information.

This is a longer post. This is a lenger post. This.

(80 words)

Figure 5.17 ...will be cut short. The word count is also
displayed.

111

SONIYLSANS ONIANI]

REPLACING PARTS OF A STRING

Chapter 5

Replacing Parts of a String

Instead of just finding substrings within a
string, as the preceding section of the chapter
discusses, you might find that you need to
replace substrings with new values. You can
do so using the str_ireplace() function:

$string = str_ireplace($needle,
$replacement, $haystack);

This function replaces every occurrence
of $needle found in $haystack with
$replacement. For example:

$me = "Larry E. Ullman';
$me = str_ireplace('E.', 'Edward', $me);

The $me variable now has a value of Larry
Edward Ullman.

That function performs a case-insensitive
search. To be more restrictive, you can
perform a case-sensitive search using
str_replace(). In this next example,
str_ireplace() will be used to cross
out “bad words” in submitted text.

There's one last string-related function I want
to discuss: trim(). This function removes any
white space—spaces, newlines, and tabs—
from the beginning and end of a string. It’s
quite common for extra spaces to be added
to a string variable, either because a user
enters information carelessly or due to sloppy
HTML code. For purposes of clarity, data
integrity, and Web design, it's worth your
while to delete those spaces from the strings
before you use them. Extra spaces sent to the
Web browser could make the page appear
oddly, and those sent to a database or cookie
could have unfortunate consequences at a
later date (for example, if a password has a
superfluous space, it might not match when
it's entered without the space).

Adjusting String Case

A handful of PHP functions are used to
change the case of a string’s letters:

¢ ucfirst() capitalizes the first letter of
the string.

¢ ucwords() capitalizes the first letter of
words in a string,

¢ strtoupper() makes an entire string
uppercase.

¢ strtolower() makes an entire string
lowercase.

Do note that due to the variance in peo-
ple's names around the globe, there's really
no flawless way to automatically format
names with PHP (or any programming
language). In fact, I would be hesitant to
alter the case of user-supplied data unless
you have really good cause to do so.

112

Using Strings

Script 5.8 This final version of the handling script
applies the trim() function and then replaces uses
of badword with a bunch of Xs.

806 = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

:Z "http://www.w3.org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">
|
|
|
|
|

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

|6 <title>Forum Posting</title>

:7 </head>

|8 <body>

|9 <?php // Script 5.8 - handle_post.php #6

|10 /* This script receives five values from
posting.html:

11 first_name, last_name, email, posting,
submit */

12

13 // Address error management, if you want.

14

15 // Get the values from the $_POST array.

16 // Strip away extra spaces using trim(Q):

17 $first_name = trim($_POST['first_name']);

18 $last_name = trim($_POST['last_name']);

19 $posting = trim($_POST['posting']);

20

21 // Create a full name variable:

22 $name = $first_name . . $last_name;

23

24 // Get a word count:

25 $words = str_word_count($posting);

26

27 // Take out the bad words:

28 $posting = str_ireplace('badword’,
'XXXXX", $posting);

29

30 // Print a message:

31 print "<div>Thank you, $name, for your
posting:

32 <p>$posting</p>

33 <p>($words words)</p></div>";

34

35 7>

36 </body>
37 </html>

The trim() function automatically strips away
any extra spaces from both the beginning and
the end of a string (but not the middle). The
format for using trim() is as follows:

$string = ' extra space before and
after text ';

$string = trim($string);

// $string is now equal to 'extra
space before and after text'.

To use str_ireplace():

1. Open handle_post.php (Script 5.7) in
your text editor or IDE, if it is not already.

2. Apply trim() to the form data

(Script 5.8):

$first_name = trim($_POST['first_
name']);

$last_name = trim($_POST['last_
name']);

$posting = trim($_POST['posting']);
Justin case the incoming data has extra-
neous white space at its beginning or end,
the trim() function is applied.

3. Remove the use of substr():
I'll want to see the entire posting for this

example, so I remove the invocation of
substr().

4. Before the print statement, add:

$posting = str_ireplace('badword",
"XXXXX", $posting);

This specific example flags the use of a
bad word in a posting by crossing it out.
Rather than an actual curse word, the
code uses badword. (You can use what-
ever you want, of course.)

continues on next page

113

ONIRILS V 40 SLIVd ONIDVIdIY

REPLACING PARTS OF A STRING

Chapter 5

If youd like to catch many bad words, you

can use multiple lines, like so:

$posting = str_ireplace('badwordl’,
"XXXXX', $posting);

$posting = str_ireplace('badword2’,
"XXXXX', $posting);

$posting = str_ireplace('badword3’,
"XXXXX', $posting);

5. Update the print statement so that it no
longer uses the ellipses:

print "<div>Thank you, $name, for
your posting:
<p>$posting</p>

<p>($words words)</p></div>";

6. Save the file, place it in the proper direc-
tory of your PHP-enabled server, and test
again in your Web browser (Figures 5.18
and 5.19).

v Tips

B Thestr_ireplace() function will even
catch bad words in context. For example,
if you entered I feel like using badwords,
the result would be I feel like using
XXXXXs.

B Thestr_ireplace() function can also
take an array of needle terms, an array of
replacement terms, and even an array as
the haystack. Because you may not know
what an array is yet, this technique isn't
demonstrated here.

B Ifyou need to trim excess spaces from
the beginning or the end of a string but
not both, PHP breaks the trim() func-
tion into two more specific functions:
rtrim() removes spaces found at the end
of a string variable, and 1trim() handles
those at the beginning. Theyre both used
just like trim():

$string = rtrim($string);

$string = 1trim($string);

) Forum Posting - Mozilla Firefox

File Edit Wew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:SDDD,l’posting.htmI ﬁ '|

Please complete this form to subtmit vour posting:

First Mame: |Elad |

Last Mame: |Puster |

Email Address: |faker@bad.example.com

I feel like using & BADWORD in
my post.

Posting:

Send My Posting

Figure 5.18 If a user enters a word you’d prefer they
not use...

2 Forum Posting - Mozilla Firefox |Z||E||X|
File Edit Wiew Hiskory EBookmarks Tools Help

(|j |http:,I',I'|DCa|hDst:BDDD,I'haI'llﬂEJDDSt.php ﬁ v|

Thank you, Bad Poster, for your posting:
I feel like using a J00000 in my post.

{9 words)

Figure 5.19 ...you can have PHP replace it.

114

CONTROL

STRUCTURES

Control structures—conditionals and
loops—are a staple of programming lan-
guages. PHP includes two general condition-
als—if and switch—both of which you'll
master in this chapter. They allow you to
establish a test and then perform actions
based on the results. This functionality gives
you the ability to make your Web sites even
more dynamic. The discussion of i f condi-
tionals will introduce two last categories of
operators: comparison and logical (you've
already seen the arithmetic and assignment
operators in the previous chapters). You'll
commonly use these in your conditionals
along with the Boolean concepts of TRUE
and FALSE.

Finally, this chapter begins programming
with loops, which allow you to repeat an
action for a specified number of iterations.
Loops can save you programming time and
help you get the most functionality out of
arrays, as you ll see in the next chapter.

115

STANLINYLS T0YLNO)

CREATING THE HTML FOrRM

Chapter 6

Creating the HTML Form

Aswith the previous chapters, the examples in
this chapter are based on an HTML form that
sends data to a PHP page. In this case, the form
is a simple registration page that requests the
following information (Figure 6.1):

¢ Email Address
& Password

& Date of birth
& Favorite color

The following steps walk through this form
before getting into the PHP code.

To create the HTML form:

1. Begin anew HTML document in your
text editor or IDE (Script 6.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Registration Form</title>
</head>
<body>
<!-- Script 6.1 - register.html -->
<div><p>Please complete this form to
register:</p>
2. Create the initial form tag:

<form action="handle_reg.php"
method="post">

As with many of the previous examples,

this page uses the POST method. The

handling script, identified by the action

attribute, will be handle_reg.php.

800 Registration Form)

.l "Iy http: / /localhost/register.html {}vh

Please complete this form to register:

Email Address: |

Password: |

Confirm Password: |

Date Of Birth: [Month

%) (pay B8 [rrvy
Favorite Color:

Figure 6.1 The HTML form used in this chapter.

Script 6.1 This pseudo-registration form is the basis
for the examples in this chapter.

808 = Script
11 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

w

|
|
|
|
|
l
| <head>

| <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>
|

|

|

|

|

|

|

|

|

|

(S0

<title>Registration Form</title>
</head>
<body>
<!-- Script 6.1 - register.html -->
@ <div><p>Please complete this form to
register:</p>

= W 0 N O

11
12 <form action="handle_reg.php"
method="post">

13

14 <p>Email Address: <input type="text"
name="email" size="30" /></p>

15

16 <p>Password: <input type="password"
name="password" size="20" /></p>

17

18 <p>Confirm Password: <input type=
"password" name="confirm" size="20" />
</p>

19

(script continues on next page)

116

Control Structures

Password: |essess

Figure 6.2 A password input type, as it’s being
filled out.

Script 6.1 continued

ece = Seript
| 20 <p>Date Of Birth:
:Zl <select name="month">
:22 <option value="">Month</option>
| 23 <option value="1">January</option>
:24 <option value="2">February</option>
:ZS <option value="3">March</option>
| 26 <option value="4">April</option>
:27 <option value="5">May</option>
:28 <option value="6">June</option>
| 29 <option value="7">July</option>
:30 <option value="8">August</option>
|31 <option value="9">September</option>
:32 <option value="10">0ctober</option>
|33 <option value="11">November</option>
| 34 <option value="12">December</option>
35 </select>

36 <select name="day">

37 <option value="">Day</option>

38 <option value="1">1</option>

39 <option value="2">2</option>

40 <option value="3">3</option>

41 <option value="4">4</option>

42 <option value="5">5</option>

43 <option value="6">6</option>

44 <option value="7">7</option>

45 <option value="8">8</option>

46 <option value="9">9</option>

47 <option value="10">10</option>

48 <option value="11">11</option>

49 <option value="12">12</option>

50 <option value="13">13</option>

51 <option value="14">14</option>

52 <option value="15">15</option>

53 <option value="16">16</option>

54 <option value="17">17</option>

55 <option value="18">18</option>

56 <option value="19">19</option>

57 <option value="20">20</option>

58 <option value="21">21</option>

59 <option value="22">22</option>

60 <option value="23">23</option>

(script continues on next page)

3.

Create inputs for the email address and

password:

<p>Email Address: <input type="text"
name="email" size="30" /></p>

<p>Password: <input type="password"
name="password" size="20" /></p>

<p>Confirm Password: <input
type="password" name="confirm"
size="20" /></p>
These lines should be self-evident. Each
line is wrapped in HTML <p></p> tags to
improve the spacing in the Web browser.
Also, note that two password inputs are
created—the second is used to confirm
the text entered in the first. Password
input types don't reveal what the user
types (Figure 6.2), so it's a good insurance
policy to make them type it again.

Begin making the inputs for the date
of birth:

<p>Date Of Birth:

<select name="month">

<option value="">Month</option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">0ctober</option>
<option value="11">November</option>
<option value="12">December</option>
</select>

continues on next page

117

W¥04 TWLH IHL ONILYIN)

CREATING THE HTML FOrRM

Chapter 6

The date of birth will be broken into three
separate inputs—month, day, and year—
rather than have the user enter it all at
once (for example, 10/23/1970 or January
26, 1974). This approach gives you more
control for validating and formatting the

information submitted

5. Create a drop-down menu for the birthday:

<select
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option

name="day">

nn

value="">Day</option>
value="1">1</option>
value="2">2</option>
value="3">3</option>
value="4">4</option>
value="5">5</option>
value="6">6</option>
value="7">7</option>
value="8">8</option>
value="9">9</option>
value="10">10</option>
value="11">11</option>
value="12">12</option>
value="13">13</option>
value="14">14</option>
value="15">15</option>
value="16">16</option>
value="17">17</option>
value="18">18</option>
value="19">19</option>
value="20">20</option>
value="21">21</option>
value="22">22</option>
value="23">23</option>
value="24">24</option>
value="25">25</option>
value="26">26</option>
value="27">27</option>
value="28">28</option>
value="29">29</option>
value="30">30</option>
value="31">31</option>

</select>

Script 6.1 continued

8o0e = Seript

61 <option value="24">24</option>

62 <option value="25">25</option>

63 <option value="26">26</option>

64 <option value="27">27</option>

65 <option value="28">28</option>

66 <option value="29">29</option>

67 <option value="30">30</option>

68 <option value="31">31</option>

69 </select>

70 <input type="text" name="year"
value="YYYY" size="4" /></p>

71

72 <p>Favorite Color:

73 <select name="color">

74 <option value="">Pick One</option>

75 <option value="red">Red</option>

76 <option value="yellow">Yellow</option>

77 <option value="green">Green</option>

78 <option value="blue">Blue</option>

79 </select></p>

80

81 <input type="submit" name="submit"
value="Register" />

82

83 </form>

84

85 </div>

86 </body>

87 </html>

118

Control Structures

Date Of Birth: | Menth ﬂ Day Q:ww [

Figure 6.3 The date of birth inputs; the year input has
a preset value.

6.

Create a text input for the birth year:
<input type="text" name="year"

value="YYYY" size="4" /></p>
Rather than use a drop-down menu that
displays 50 or 100 years, you have the
user enter their birth year in a text box.
By presetting the value of the input, you
make the text box indicate the proper
format for the year (Figure 6.3). Also, just
to clarify, the closing </p> tag completes
the paragraph begun in Step 4.

Create a drop-down menu for the user’s
favorite color:

<p>Favorite Color:

<select name="color">

<option value="">Pick One</option>
<option value="red">Red</option>
<option value="yellow">Yellow
</option>
<option value="green">Green</option>
<option value="blue">Blue</option>
</select></p>
The truth is that I'm adding this input so
that it can be used for a specific example
later in the chapter, but it might be used
to customize the look of the site after the
user logs in. Naturally, you can add as
many colors as you want here.

continues on next page

119

W¥04 TWLH IHL ONILYIN)

CREATING THE HTML FOrRM

Chapter 6

8. Add a submit button and close the form:

10

<input type="submit"
name="submit"
value="Register" />

</form>

Complete the HTML page:
</div>

</body>

</html>

Save the file as register.html, place it
in the proper directory for your PHP-
enabled server, and load the page in your
Web browser.

v Tips

B Registration pages should always have

users confirm their password and pos-
sibly their username or email address
(whatever information will be used to
login).

Most registration pages use either a
nickname or an email address for the
username. If you use the email address
as a username, it's easier for your users
to remember their registration informa-
tion (a user may have only a few email
addresses but a gazillion usernames

for different sites around the Web).
Furthermore, email addresses are, by
their nature, unique.

120

Control Structures

The if Conditional

The basic programming conditional is the
standard 1f (what used to be called an if-
then conditional—the then is now implied).
The syntax for this kind of conditional is
very simple:

if (condition) {
statement(s);

}

The condition must go within parentheses;
then the statement(s) are placed within curly
braces. These are commands to be executed
(for example, printing a string or adding two
numbers together). Each separate statement
(or command) must have its own semicolon
indicating the end of the line, but there is no
limit on the number of statements that can
be associated with a conditional.

Programmers commonly indent these state-
ments from the initial i f line to indicate that
theyTe the result of a conditional, but that
format isn't syntactically required. You'll also
see people use this syntax:

if (condition)
{
statement(s);

}

Failure to use a semicolon after each state-
ment, forgetting an opening or closing paren-
thesis or curly brace, or using a semicolon
after either of the braces will cause errors to
occur. So, be mindful of your syntax as you
code with conditionals.

PHP uses the Boolean concepts of TRUE and
FALSE when determining whether to execute
the statements. If the condition is TRUE, the
statements are executed; if it's FALSE, they
are not executed.

121

TVNOILIANO) 41 FHL

THE 1IF CONDITIONAL

Chapter 6

Over the course of this chapter (most of it,
anyway), a PHP script will be developed until
it fully validates the feedback.html form
data. To start, this first version of the script
will just create the basic shell of the valida-
tion process, defining and using a variable
with a Boolean value that'll track the success
of the validation process.

To create an if conditional:

1.

Begin a new document in your text editor
or IDE (Script 6.2):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Registration</title>
</head>
<body>
<h2>Registration Results</h2>

Begin the PHP section and address error
management, if necessary:

<?php // Script 6.2 - handle_reg.php
If you don't have display_errors enabled,
oriferror_reportingis set to the wrong
level, see Chapter 3, “HTML Forms and
PHP” for the lines to include here to alter
those settings.

Create a flag variable:

$okay = TRUE;

This variable is initialized with a Boolean
value of TRUE (Booleans are case-insensi-
tive, so you could also write True or true). 1
call this a “flag” variable because its value
initselfisn't important; it'll just be used to
indicate the status of something.

Script 6.2 This shell of a PHP script will be built upon
to validate the form data.

eee =1 Seript
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Registration</title>
7 </head>
8 <body>
9 <h2>Registration Results</h2>
10 <?php // Script 6.2 - handle_reg.php
11 /* This script receives eight values from
register.html:
12 email, password, confirm, month, day,
year, color, submit */
13
14 // Address error management, if you want.
15
16 // Flag variable to track success:
17 $okay = TRUE;
18
19 // If there were no errors, print a
success message:
20 if ($okay) {
21 print '<p>You have been successfully
registered (but not really).</p>';
22}
23 7>
24 </body>
25 </html>

122

Control Structures

®00 Registration Form =

d N http://localhost/register.htm| ﬁ'vh

Please complete this form to register:

Email Address: | |

Password: [sses |

1

Confirm Password: [

Date Of Birth: | Month ;Q 6 m Yy |

Favorite Color:

Figure 6.4 Filling out the HTML form to any degree...

e 00 Registration =

d' 4 http: / /localhost/handle_reg.php ﬁ'vh

Registration Results

You have been successfully registered (but not really).

A

Figure 6.5 ...results in just this.

4. Print a message if everything is all right:
if ($okay) {
print '<p>You have been
successfully registered (but
not really).</p>";

}

Over the course of this chapter, valida-
tion routines will be added to this script,
checking the submitted form data. If any
data fails a routine, then $okay will be set
to FALSE. In that case, this conditional
will also be FALSE, so the message won't
be printed. However, if the data passes
every validation routine, then $okay will
still be TRUE, in which case this message
will be printed.

5. Complete the PHP section and the
HTML page:
7>
</body>
</html>

6. Save the file as handle_reg.php, place
it in the proper directory for your PHP-
enabled server (in the same directory as
register.html), and test both in your
Web browser (Figures 6.4 and 6.5).
Of course, the fact is that this script will
always print the success message, as
nothing will set $okay to FALSE. You can
even run the script directly and see the
same result.

v Tip

B Ifthe statement area of your conditional
is only one line long, you technically don't
need the curly braces. In that case, you
can place the whole conditional on one
line, like so:
if (condition) statement;

You may run across code in this format.
However, I think it’s best to always use the
multiline format (as demonstrated in the
syntax introduction) to improve consis-
tency and minimize errors.

123

TVNOILIANO) 41 FHL

VALIDATION FUNCTIONS

Chapter 6

Validation Functions

PHP has dozens of functions that are com-
monly used to validate form data. Of these
functions, three are used in this chapter’s
examples.

First up is the empty() function, which
checks to see if a given variable has a value
other than @ or an empty string. It returns
TRUE if the variable doesn't have a value
(or has a value of @ or an empty string) and
FALSE otherwise:

$vl = 0;

$v2 = 'something';
empty($v); // TRUE
empty($v1); // TRUE
empty($v2); // FALSE

This function is perfect for making sure that
text boxes in forms have been filled out. For
example, if you have a text input named
email and the user doesn't enter anything
in it before submitting the form, then the
$_POST["email'] variable will exist but will
have an empty value.

Next is the isset() function, which is almost
the opposite of empty(), albeit with a slight
difference. The isset() function returns
TRUE if a variable has a value (including @

or an empty string) or FALSE otherwise.

For example:

$vl = 0;

$v2 = 'something';
isset($v); // FALSE
isset($v1l); // TRUE
isset($v2); // TRUE

The isset() function is commonly used to
validate non-text form elements like check-
boxes, radio buttons, and select menus.

Finally, the is_numeric() function returns
TRUE if the submitted variable has a valid
numerical value and FALSE otherwise.

124

Control Structures

Script 6.3 Using if conditionals and the empty()
function, this PHP script checks if email address and
password values were provided.

8Qe = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtml1l-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

| 4 <head>

|5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
:6 <title>Registration</title>

:7 <style type="text/css" media="screen">
| 8 .error { color: red; }

:9 </style>

|10 </head>

|11 <body>

|12 <h2>Registration Results</h2>

13 <?php // Script 6.3 - handle_reg.php #2

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>';

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 3}

33

34 // If there were no errors, print a
success message:
35 if ($okay) {
36 print '<p>You have been successfully
registered (but not really).</p>";

37 %

38 7>

39 </body>
40 </html>

Integers, decimals, and even strings (if
theye a valid number) can all pass the is_
numeric() test:

is_numeric(2309); // TRUE
is_numeric('80.23"); // TRUE
is_numeric('Bears'); // FALSE

Let's start applying these functions to the
PHP script in order to perform some actual
data validation.

To validate form data:

1. Open handle_reg.php (Script 6.2) in your
text editor or IDE, if it is not already.

2. Within the document’s head, define a CSS

class (Script 6.3):
<style type="text/css" media=
"screen">

.error { color: red; }
</style>

This CSS class will be used to format any
printed registration errors.

3. Validate the email address:
if (empty($_POST['email'])) {
print '<p class="error">Please
enter your email address.</p>";
$okay = FALSE;

}

This if conditional uses the code
empty($_POST['email']) as its condi-
tion. If that variable is empty, meaning it
has no value, a value of 9, or a value of an
empty string, the conditional is TRUE.

In that case, the print statement will be
executed and the $okay variable will be
assigned a value of FALSE (indicating that
everything is not okay).

If the variable isn’t empty, then the con-
ditional is FALSE, the print() function
is never called, and $okay will retain its
original value.

continues on next page

125

SNOILONN{ NOLLVAITVA

VALIDATION FUNCTIONS

Chapter 6

4. Repeat the validation for the password:
if (empty($_POST['password'])) {

print '<p class="error">Please
enter your password.</p>";

$okay = FALSE;
1

This is a repeat of the email validation,
but with the variable name and print
statement changed accordingly. The other
form inputs will be validated in time.

All of the printed error messages are
placed within HTML paragraph tags that
have a class value of error. By doing so, the
CSS formatting will be applied (i.e., the
errors will be printed in red).

5. Save the file as handle_reg.php, place it
in the same directory as register.html
(on your PHP-enabled server), and test
both the form and the script in your Web
browser (Figures 6.6 and 6.7).

6. Resubmit the form in different states of
completeness to test the results some more.

If you do provide both email address and
password values, the result will be exactly
like that in Figure 6.5, because the $okay
variable will still have a value of TRUE.

v Tips

B When you use functions within your condi-
tionals, as you use empty() here, it's easy to
forget a closing parenthesis and see a parse
error. Be extra careful with your syntax
when youre coding any control structure.

B Oneuse of the isset() function is to
avoid referring to a variable unless it
exists. If PHP is set to report notices (see
“Error Reporting” in Chapter 3), then, for
example, using $var if it has not been
defined will cause an error. You can avoid
this by coding
if (isset ($var)) {

// Do whatever with $var.

eno Registration Form (]

d [' http://localhost/register.html

Please complete this form to register:

Email Address: | |

Password: |

Confirm Password: | [

Date Of Birth: [month— [#)(6 &) [rvry |

Favorite Color:

Figure 6.6 If you omit the email address or password
form input...

® O) Registration

i [http:{/localhost/handle_reg.php ﬁ vh

Registration Results

Please enter your email address.

Please enter your password.

Figure 6.7 ...you’ll see messages like these.

B Even though all form data is sent to a PHP
script as strings, the is_numeric() func-
tion can still be used for values coming
from a form because it can handle strings
that contain only numbers.

B The isset() function can take any num-
ber of variables as arguments:
if (isset($varl, $var2)) {
print 'Both variables exist.';

h

If all of the named variables are set, the
function returns TRUE; if any variable is
not set, the function returns FALSE.

126

Control Structures

Script 6.4 By adding if-else conditionals, you can
validate the date of birth and create a new variable in
the process.

8Qe = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

:2 "http://www.w3.0org/TR/xhtml1/DTD/
| xhtmll-transitional.dtd">

:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">

| 4 <head>
|s
|
|
|
|
|
|

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css" media="screen">

| 8 .error { color: red; }

:9 </style>

|10 </head>

11 <body>

12 <h2>Registration Results</h2>

13 <?php // Script 6.4 - handle_reg.php #3

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>";

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 3}

33

34 // Validate the birthday:
35 $birthday = '';
36

(script continues on next page)

Using else

The next logical formation after an if condi-
tional is the if-else (sometimes called the
if-then-else) conditional. It allows you to
establish a condition that indicates when
one statement would be executed and then
execute other statement(s) if that condition
isn't met:

if (condition) {
statement(s);

} else {
other_statement(s);

}

The important thing to remember when
using this construct is that unless the condi-
tion is explicitly met, the else statement will
be executed. In other words, the statements
after the else constitute the default action,
whereas the statements after the if condi-
tion are the exception to the rule.

Let’s rewrite the handle_reg.php page, incor-
porating if-else conditionals, to validate the
birthday data. In the process, a new variable
will be created, a string representing the
birthday in the format MM-DD-YYYY.

To use else:

1. Open handle_reg.php (Script 6.3) in your
text editor or IDE, if it is not already.

2. Before the $okay conditional, create a new
variable (Script 6.4):
$birthday = '';
This variable will be built up over the
course of the script until it stores the
registrant’s birth month, day, and year. It's
initialized as an empty string here, which
isn't required by PHP but is an arguably
more professional step to take.

continues on next page

127

3S173 ONISN

USING ELSE

Chapter 6

3.

Validate the month value:
if (is_numeric($_POST['month'])) {

$birthday = $_POST['month'] . '-';
} else {

print '<p class="error">Please
select the month you were born.</
p>";

$okay = FALSE;
3

Because the month variable should be a
number, you can use the is_numeric()
function to check its value, rather than
empty().

If the variable has a numeric value (mean-
ing that the conditional is TRUE), then
the $birthday variable is assigned the
month value, followed by a hyphen, using
concatenation. This is the first step in

the process of creating a birthday in the
format MM-DD-YYYY.

If the month does not have a numeric
value, an error message is printed and the
$okay variable is set to FALSE (as is the
case if any validation routine fails).

Repeat this structure to validate the day
and year variables:

if (is_numeric($_POST['day'1)) {
$birthday .= $_POST['day'] . '-";
} else {

print '<p class="error">Please
select the day you were born.</p>";

$okay = FALSE;
}
if (is_numeric($_POST['year'])) {

$birthday .= $_POST['year'];
} else {
print '<p class="error">Please

enter the year you were born as
four digits.</p>";
$okay = FALSE;

Script 6.4 continued

ece = Seript
|37 // Validate the month:
|38 if (is_numeric($_POST['month'1)) {
:39 $birthday = $_POST['month'] . '-';
:40 } else {
| 41 print '<p class="error">Please select
: the month you were born.</p>";
:42 $okay = FALSE;
143}
| 44
|45 // Validate the day:
:46 if (is_numeric($_POST['day'1)) {
| 47 $birthday .= $_POST['day'] . '-'";
:48 } else {
:49 print '<p class="error">Please select
the day you were born.</p>';

50 $okay = FALSE;

51 }

52

53 // Validate the year:

54 if (is_numeric($_POST['year'])) {

55 $birthday .= $_POST['year'];

56 } else {

57 print '<p class="error">Please enter
the year you were born as four
digits.</p>";

58 $okay = FALSE;

59 1}

60

61 // If there were no errors, print a

success message:

62 if ($okay) {

63 print '<p>You have been successfully
registered (but not really).</p>";

64 print "<p>You entered your birthday as
$birthday.</p>";

65 1

66 7>

67 </body>

68 </html>

128

Control Structures

800 Registration Form

i i | http:f/localhost/register.html

Please complete this form to register:

4
v v

Email Address: iemail@example.mm |

Password: E....

Confirm Password: . [

Date Of Birth: [march 18] ((Day [#) [rvvy |

Favorite Color:

|

Figure 6.8 Test the form again, omitting some of the
date-of-birth information.

00 Registration

i] E'I http://localhost/handle_reg.php

Registration Results

=
v

Please select the day you were born.,

Please enter the year you were born as four digits.

Figure 6.9 If you skip any of the date-of-birth fields,
error messages are printed.

800 Registration (=]
1.(http:{/localhost/handle_reg.php WY

Registration Results

You have been successfully registered (but not really).

You entered your birthday as 8-2-2006.

Figure 6.10 If the user completes the date-of-birth
section properly, his or her birth date is printed in a
new format.

The day validation is identical to the
month validation. You also check whether
the year has a numeric value using the
is_numeric() function, even though its
value comes from a text box and not a
drop-down menu. If the user changed the
default year value (YYY7, see Figure 6.3)
to a number, this conditional is TRUE,
and the year is added to the $birthday
variable. Otherwise, an error message is
printed and $okay is set to FALSE.

5. After the final print statement, also print
out the value of the $birthday:
print "<p>You entered your birthday

as $birthday.</p>";

If the $okay variable still has a value of
TRUE, then the submitted data passed
every validation routine. This means that
the birthday routines also passed, so the
accumulated $birthday variable can be
printed within context.

6. Save your script, place it in the same
directory as register.html (on your PHP-
enabled server), and test it in your Web
browser again (Figures 6.8, 6.9, and 6.10).

v Tip

B Another good validation function is
checkdate(), which you can use to con-
firm that a date exists (or existed in the
past). You would use it like so:

if (checkdate($month, $day,
$year)) {.

129

3S173 ONISN

MORE OPERATORS

Chapter 6

More Operators Table 6.1
9,

Previous chapters discussed most of PHP’s PHP’s Operators
operators along with the variable types that Operator Ushee e
use them. These operators include arithmetic * Addition Arithmetic
for numbers: addition (+), subtraction (-), B Subt.rac.tior? Ar?thmet?c
multiplication (*), and division (/), along ' Multiplication Arithmetic
with the incremental (++) and decremental / Division) Ar?thmet?c
(--) shortcuts for increasing or decreasing OMf%déJilvuis;igﬁ)mamder Arithmetic
the value of a number by 1. Then there is the o Incrementation Arithmetic
assignment operator (=), which is used to N Decrementation Arithmetic
set the value of a variable, regardless of type. _ Assigns avalue Assignment
You've also learned about concatenation (.), to avariable
which appends one string to another. = Equality Comparison
These operators are all handy for establishing = Inequality Compar?son
the value of a variable, but theyre of less use < Less than Compar!son
when it comes to conditionals. Now you'll > Greater than Compar!son
explore comparison and logical operators that <= Less than or equal to Compar!son
widen your conditional possibilities. Table 6.1 = Greatér than or equalto Con)parlson
lists a fuller assortment of PHP’s operators. ! Negation Logical

AND And Logical
Comparison 8& And Logical

OR Or Logical
When the assignment operator (the equals 0 or Logical
sign) was first introduced in Chapter 2, XOR Or not Logical
“Variables,” you learned that its meaning isn't Concatenation String

exactly what youd conventionally think it to
be. Theline $variable = 5; doesn't state that
$variable is equal to 5 but that it is assigned
the value of 5.'This is an important distinction.

When you'e writing conditionals, you'll often
want to see if a variable is equal to a specific
value (to match usernames or passwords,
perhaps), which you can't do with the equals
sign alone (because it's used for assigning a
value, not equating values). For this purpose,
you have the equality operator (==), which is
created by using two equals signs together:

$variable = 5;
if ($variable ==5) { ...

130

Control Structures

Script 6.5 This version of the form-handling script
uses comparison operators to validate the password
and year values.

8coe =) Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

: xhtml1l-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
:6 <title>Registration</title>

|7 <style type="text/css" media="screen">
:8 .error { color: red; }

:9 </style>

|10 </head>

|11 <body>

:12 <h2>Registration Results</h2>

13 <?php // Script 6.5 - handle_reg.php #4

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>';

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 %

33

34 // Check the two passwords for equality:
35 if ($_POST['password'] != $_POST
["confirm']) {

36 print '<p class="error">Your
confirmed password does not match
the original password.</p>";

37 $okay = FALSE;

38 1}

39

(script continues on next page)

Using these two lines of code together first
establishes the value of $variable as 5 and
then makes a TRUE conditional when you
see whether $variable is equal to 5. This
example demonstrates the significant dif-
ference one more equals sign makes in your
PHP code and why you must distinguish
carefully between the assignment and com-
parison operators.

The next comparison operator—not equal
to—is represented by an exclamation mark
coupled with an equals sign (!=). The remain-
ing comparison operators are identical to
their mathematical counterparts: less than
(<), greater than (>), less than or equal to (< =),
and greater than or equal to (> =).

As a demonstration of comparison operators,
you'll make sure that the user’s birth year is
before 2009 and that the confirmed password
matches the original password.

To use comparison operators:

1. Open handle_reg.php (Script 6.4) in your
text editor or IDE, if it is not already.

2. After the password validation, check that
the two passwords match (Script 6.5):
if ($_POST['password'] !=

$_POST['confirm']) {
print '<p class="error">Your
confirmed password does not
match the original password.
</p>";
$okay = FALSE;
}

To compare these two string values, you
use the not-equal-to operator. You could
use one of the string comparison func-
tions (see Chapter 5, “Using Strings”), but
this will suffice.

continues on next page

131

S¥0LV¥IdQ FUOW

MORE OPERATORS

Chapter 6

3. After the year validation, check that the
year is before 2009:
if ($_POST['year'] >= 2009) {
print '<p class="error">Either
you entered your birth year
wrong or you come from the
future!l</p>";
$okay = FALSE;

}

If the user entered their year of birth as
2009 or later, it's presumably a mistake.

Script 6.5 continued

ece = Seript

40 // Validate the birthday:

41 $birthday = '';

42

43 // Validate the month:

44 if (is_numeric($_POST['month'])) {

45 $birthday = $_POST['month'] . '-";

46 1} else {

47 print '<p class="error">Please select
the month you were born.</p>";

48 $okay = FALSE;

49 1}

50

51 // Validate the day:

52 if (is_numeric($_POST['day'])) {

53 $birthday .= $_POST['day'] . '-';

54 } else {

55 print '<p class="error">Please select
the day you were born.</p>";

56 $okay = FALSE;

57 }

58

59 // Validate the year:

60 if (is_numeric($_POST['year'])) {

61 $birthday .= $_POST['year'];

62 1} else {

63 print '<p class="error">Please enter
the year you were born as four
digits.</p>";

64 $okay = FALSE;

65 1

66

67 // Check that they were born before 2009:

68 if ($_POST['year'] >= 2009) {

69 print '<p class="error">Either you
entered your birth year wrong or you
come from the futurel</p>';

70 $okay = FALSE;

71 3}

72

73 // If there were no errors, print a

success message:

74 if ($okay) {

75 print '<p>You have been successfully
registered (but not really).</p>';

76 print "<p>You entered your birthday
as $birthday.</p>";

77

78 7>

79 </body>

80 </html>

132

Control Structures

00 Registration Form

‘ “u http:/ /localhost/register.html

Please complete this form to register:

=
A

Email Address: iemai l@example.com |

Password: [essssesssassarassesanres

1

Confirm Password: i..... [

Date Of Birth: | August m[2 m 2023 |

Favorite Color:

Figure 6.11 Run the form once again...

00 Registration =

‘ : | http://localhost/handle_reg.php T,}Yh

Registration Results

Your confirmed password does not match the
original password.

Either you entered your birth year wrong or you
come from the future!

Figure 6.12 ...with two new validation checks in place.

4. Save your script, place it in the same
directory as register.html (on your PHP-
enabled server), and test it in your Web
browser again (Figures 6.11 and 6.12).

v Tips

B Before you compare two string values
that come from a form (like the password
and confirmed password), it's a good idea
to apply the trim() function to both, to
get rid of any errant spaces. I didn't do so
here, so as not to overcomplicate matters,
but this habit is recommended.

B Another method of checking that a text
input type has been filled out (as opposed
to using the empty() function) is this:
if (strlen ($var) > 0) {

// $var is okay.

}

B Inanif conditional, if you make the
mistake of writing $variable = 5in place
of $variable == 5,youll see that the
corresponding conditional statements are
always executed. This happens because
although the condition $variable ==
may or may not be TRUE, the condition
$variable = 5isalways TRUE.

B Some programmers advocate reverse
conditionals—for example, writing 5 ==
$variable. Although it looks awkward, if
you inadvertently code 5 = $variable,
an error results (allowing you to catch the
mistake more easily) because the number
5 can't be assigned another value.

133

S¥0LV¥IdQ FUOW

MORE OPERATORS

Chapter 6

Logical

Writing conditions in PHP comes down to
identifying TRUE or FALSE situations. This
can be accomplished using functions and
comparative operators, as you've already
seen. Logical operators—the final operator
type discussed in this chapter—help you cre-
ate more elaborate or obvious constructs.

In PHP, one example of a TRUE condition is
simply a variable name that has a value that
isn't zero or an empty string, such as

$variable = 5;
if ($variable) { ...

You've already seen this with the $okay vari-
able being used in the handling PHP script.

A condition is also TRUE if it makes logical
sense:

if G>=3)1{ ...

A condition will be FALSE if it refers to a vari-
able and that variable has no value (or a value
of @ or an empty string), or if you've created
an illogical construct. The following condi-
tion is always false:

if 65<=3)1{ ...

In PHP, the exclamation mark (!) is the NOT
operator. You can use it to invert the TRUE/
FALSE status of a statement. For example:

$var = 'value';

if ($var) {... // TRUE
if (!$var) {... // FALSE
isset($var); // TRUE
lisset($var); // FALSE
lempty($var); // TRUE

To go beyond simple one-part conditions,
PHP supports five more types of logical
operators: two versions of and (AND and &),
two versions of or (OR and | | —a character
called the pipe, put together twice), and or
not (XOR). When you have two options for one

Nesting Conditionals

Besides using logical operators to create
more complex conditionals, you can use
nesting for this purpose (the process of
placing one control structure inside of
another). The key to doing so is to place the
interior conditional as the statement(s)
section of the exterior conditional. For
example:

if (conditionl) {
if (condition2) {
2statement(s);
} else { // condition2 else
2other_statement(s);
} // End of 2
} else { // conditionl else
lother_statement(s);
} // End of 1

Asyou can see from this example, you can
cut down on the complexity of these struc-
tures by using extensive indentations and
comments. As long as every conditional is
syntactically correct, there are no rules as
to how many levels of nesting you can have,
whether you use an else clause, or even
whether a subconditional is part of the if
or the else section of the main conditional.

134

Control Structures

Script 6.6 Here the handling PHP script is changed
so that the year validation routine uses both multiple
and nested conditions. The color conditional also
uses a logical operator.

ece =] Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

| 2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
|6 <title>Registration</title>

:7 <style type="text/css" media="screen">
:8 .error { color: red; }

|19 </style>

:1@ </head>

|11 <body>

|12 <h2>Registration Results</h2>

13 <?php // Script 6.6 - handle_reg.php #5

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>";

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 3}

33

34 // Check the two passwords for equality:
35 if ($_POST['password'] != $_POST
['confirm']) {

36 print '<p class="error">Your
confirmed password does not match the
original password.</p>";

37 $okay = FALSE;

38 3}

39

(script continues on next page)

operator (as with and and or), they differ only
in precedence. For almost every situation,
you can use either version of and or either
version of or interchangeably.

Using parentheses and logical operators, you
can create even more complex if condition-
als. For an AND conditional, every conjoined
part must be TRUE in order for the whole
conditional to be TRUE. With OR, at least one
subsection must be TRUE to render the whole
condition TRUE. These conditionals are TRUE:

if ((5<=3)0RG>=3))1{...
if C5>3)AND (G <10))1{ ...

These conditionals are FALSE:

if C5!1=5ADG>3))1{...
if CGG!1=50RG<3D){...

As you construct your conditionals, remem-
ber two important things: first, in order for
the statements that are the result of a condi-
tional to be executed, the conditional must
have a TRUE value; second, by using paren-
theses, you can ignore rules of precedence
and ensure that your operators are addressed
in the order of your choosing.

To demonstrate logical operators, you'll add
two more conditionals to the handle_reg.
php page. You'll also nest one of the year con-
ditionals inside another conditional (see the
sidebar “Nesting Conditionals” for more).

To use logical operators:

1. Open handle_reg.php (Script 6.5) in your
text editor or IDE, if it is not already.

2. Delete the existing year validations
(Script 6.6).
You'll entirely rewrite these conditionals

as one nested conditional, so it’s best to
get rid of the old versions entirely.

continues on next page

135

S¥0LV¥IdQ FUOW

MORE OPERATORS

Chapter 6

3.

5.

Check that the year variable is a four-digit
number:
if (is_numeric($_POST['year']) AND
(strlen($_POST['year']) == 4)) {
This conditional has two parts. The first
you've already seen—it tests for a valid
numeric value. The second part gets the
length of the year variable (using the
strlen() function) and checks if this
value is equal to 4. Because of the AND,
this conditional is TRUE only if both
conditions are met.

Create a subconditional to verify the year

value isn't after 2009:

if ($_POST['year'] >= 2009) {

print '<p class="error">Either you
entered your birth year wrong or

you come from the future!</p>";
$okay = FALSE;
} else {

$birthday .= $_POST['year'];

}

This if-else conditional acts as the state-
ments part of the main conditional, being
executed only if that condition is TRUE.
This if-else checks whether the year
variable is greater than or equal to 2009. If
itis, an error message is printed and the
$okay variable is set to FALSE (indicating
aproblem occurred). Otherwise, the year
value is appended to the $birthday vari-
able as before.

Complete the main year conditional:
} else { // Else for 1st conditional.
print '<p class="error">Please
enter the year you were born
as four digits.</p>';
$okay = FALSE;
} // End of 1st conditional.

Script 6.6 continued

eoe = Seript
|40 // Validate the birthday:
:41 $birthday = '';
| 42
:43 // Validate the month:
|44 if (is_numeric($_POST['month'])) {
:45 $birthday = $_POST['month'] . '-';
|46 1} else {
| 47 print '<p class="error">Please select
: the month you were born.</p>";
| 48 $okay = FALSE;
[49 1}
| 50
|51 // Validate the day:
|52 if (is_numeric($_POST['day'])) {
:53 $birthday .= $_POST['day'] . '-';
|54 } else {
| 55 print '<p class="error">Please select
the day you were born.</p>";

56 $okay = FALSE;

57 %

58

59 // Validate the year:

60 if (is_numeric($_POST['year']) AND

(strlen($_POST['year']) == 4)) {
61
62 // Check that they were born before
2009.

63 if ($_POST['year'] >= 2009) {

64 print '<p class="error">Either you
entered your birth year wrong or
you come from the futurel</p>';

65 $okay = FALSE;

66 } else {

67 $birthday .= $_POST['year'];

68 } // End of 2nd conditional.

69

70 } else { // Else for 1st conditional.

71

72 print '<p class="error">Please enter

the year you were born as four
digits.</p>";

73 $okay = FALSE;

74

75 3} // End of 1st conditional.

76

77 // If there were no errors, print a

success message:

78 if ($okay) {

79 print '<p>You have been successfully

registered (but not really).</p>';

80 print "<p>You entered your birthday as

$birthday.</p>";

81 }

82 7>

83 </body>

84 </html>

136

Control Structures

e0o Registration Form (=)
d] k.l http:/ /localhost/register.html

Please complete this form to register:

Email Address: iemai I@example.com |

Password: :.. |

Confirm Password: i........ [

Date Of Birth: [august][z &) |us i
Favorite Color:

Figure 6.13 The PHP script now catches if the year
isn’t a four-digit number, as will be the case with this
form submission.

®e00

d N http:/ /localhost/handle_reg.php

Registration Results

Registration =

D

Please enter the year you were born as four digits.

Figure 6.14 Error messages are printed if fields are
incorrectly filled out.

o000 Registration (=]
“1.[http://localhost/handle_reg.php [g

Registration Results

Either you entered your birth year wrong or you come from
the future!

Figure 6.15 The year validation still checks that the
date is before 2009.

This else section completes the condi-
tional begun in Step 3. If at least one of the
conditions set forth there is FALSE, this
message is printed and $okay is set

to FALSE.

6. Those are the only changes to the script,
s0 you can now save it again, place it in
the same directory as register.html (on
your PHP-enabled server), and test it in
your Web browser again (Figures 6.13
and 6.14).

7. If desired, change your year value to be
in the future and submit the form again
(Figure 6.15).

v Tips

B Its another common programming
convention—which is maintained in
this book—to write the terms TRUE and
FALSE in all capitals. This isn't a require-
ment of PHP, though. For example, the
following conditional is TRUE:

if (true) {...

B It’s very easy in long, complicated con-
ditionals to forget an opening or closing
parenthesis or curly brace, which will pro-
duce either error messages or unexpected
results. Find a system (like spacing out
your conditionals and using comments)
to help clarify your code. Another good
technique is to create the entire condi-
tional’s structure first, and then go back to
add the details.

B Ifyou have problems getting your if-else
statements to execute, print out the
values of your variables to help debug the
problem. A conditional may not be TRUE
because a variable doesn't have the value
you think it does.

137

S¥0LV¥IdQ FUOW

USING ELSEIF

Chapter 6

Using elseif

Similar to the if-else conditional is
if-elseif (orif-elseif-else).Itacts

like a running if statement and can be
expanded to whatever length you require:

if (conditionl) {
statement(s);

} elseif (condition2) {
other_statement(s);

}

Here's another example:

if (conditionl) {
statement(s);

} elseif (condition2) {
other_statement(s);

} else {
other_other_statement(s);

}

You must always make the else the last

part of a conditional because it’s executed
unless one of the conditions to that point

has been met (again, it represents the default
behavior). You can, however, continue to use
elseifs as many times as you want as part of
one if conditional.

As an example of this, let’s create a condi-
tional that prints a message based upon the
selected color value.

Script 6.7 This multiline if-elseif-else conditional
prints a color-specific message and validates that a
submitted color has an allowed value.
806 = Script
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css" media="screen">

| 8 .error { color: red; }

:9 </style>

|10 </head>

11 <body>

12 <h2>Registration Results</h2>

13 <?php // Script 6.7 - handle_reg.php #6

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you
want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>";

25 $okay = FALSE;

26}

27

28 // Validate the password:

29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 %

33

(script continues on next page)

138

Control Structures

Script 6.7 continued

eceoe 51 Seript
|34 // Check the two passwords for equality:
135 if ($_POST['password'] !=
| $_POST['confirm']) {
:36 print '<p class="error">Your
| confirmed password does not match the
| original password.</p>';
:37 $okay = FALSE;
138 1}
:39
:40 // Validate the birthday:
|41 $birthday = '';
:42
|43 // Validate the month:
:44 if (is_numeric($_POST['month'1)) {

45 $birthday = $_POST['month'] . '-';

46 1} else {

47 print '<p class="error">Please select

the month you were born.</p>";

48 $okay = FALSE;

49 3

50

51 // Validate the day:

52 if (is_numeric($_POST['day']1)) {

53 $birthday .= $_POST['day'] . '-'";

54 1} else {

55 print '<p class="error">Please select

the day you were born.</p>";

56 $okay = FALSE;

57 %

58

59 // Validate the year:

60 if (is_numeric($_POST['year']) AND

(strlen($_POST['year']) == 4)) {
61
62 // Check that they were born before
2009.

63 if ($_POST['year'] >= 2009) {

64 print '<p class="error">Either you
entered your birth year wrong or
you come from the futurel!</p>";

65 $okay = FALSE;

66 } else {

67 $birthday .= $_POST['year'];

68 } // End of 2nd conditional.

69

(script continues on next page)

To use elseif:

1.

2.

3.

Open handle_reg.php (Script 6.6) in your
text editor or IDE, if it is not already.

Before the $okay conditional, begin a new

conditional (Script 6.7):

if ($_POST['color'] == 'red') {
print '<p style="color:red;">Red

is your favorite color.</p>"';

The color value comes from a select

menu with four possible options: red,

yellow, green, and blue. This conditional

will print a message, repeating back their

color choice, also formatted in that color.

The first condition checks if the value

of $_POST['color'] is equal to the

string red.

Add an elseif clause for the second
color:
} elseif ($_POST['color'] ==
'yellow') {
print '<p style="color:yellow;">
Yellow is your favorite
color.</p>";
The elseif continues the main condi-
tional begun in Step 2. The condition itself
is a replication of the condition in Step 2,
using a new color comparison.

continues on next page

139

413S73 ONISN

USING ELSEIF

Chapter 6

4. Add elseif clauses for the other two
colors:
} elseif ($_POST['color'] ==
'green') {
print '<p
style="color:green;">Green is your
favorite color.</p>';
} elseif ($_POST['color'] ==
"blue') {
print '<p style="color:blue;">
Blue is your favorite color.
</p>";
Once you understand the main concept,
it’s just a matter of repeating the elseifs
for every possible color value.

5. Add an else clause:
} else { // Problem!

print '<p class="error">Please
select your favorite color.</p>';

$okay = FALSE;

}

If the user didn't select a color, or if they
manipulated the form to submit a dif-
ferent color value (other than red, yellow,
green, or blue), none of the conditions will
be TRUE, meaning this else clause will
take effect. It prints an error and assigns
avalue of FALSE to $okay, indicating a
problem.

Script 6.7 continued

e O 6 = Script
|70} else { // Else for 1st conditional.
|71
:72 print '<p class="error">Please enter
: the year you were born as four
| digits.</p>";
[73 $okay = FALSE;
|74
|75 '} // End of 1st conditional.
:76
| 77 // Validate the color:
:78 if ($_POST['color'] == "red') {
:79 print '<p style="color:red;">Red is
: your favorite color.</p>';
180 } elseif ($_POST['color'] == 'yellow') {
81 print '<p style="color:yellow;">Yellow
is your favorite color.</p>';
82 } elseif ($_POST['color'] == 'green') {
83 print '<p style="color:green;">Green
is your favorite color.</p>';
84 } elseif ($_POST['color'] == 'blue") {
85 print '<p style="color:blue;">Blue is
your favorite color.</p>';

86 } else { // Problem!

87 print '<p class="error">Please select
your favorite color.</p>'";

88 $okay = FALSE;

89 1}

90

91 // If there were no errors, print a

success message:

92 if ($okay) {

93 print '<p>You have been successfully
registered (but not really).</p>";

94 print "<p>You entered your birthday as
$birthday.</p>";

95 }

% 7>

97 </body>

98 </html>

140

Control Structures

en0n Registration
| http:{/localhost/handle_reg.php

Registration Results

=3
v

Blue is your favorite color.
You have been successfully registered (but not really).

You entered your birthday as 4-20-1996.

Figure 6.16 The script now prints a message
acknowledging the user’s color choice (although
you can’t really tell in this black and white book).

OO0 Registration (=]

i ' ihttp:Hlocalhostfhandle_reg,phpﬁvh

Registration Results

Please select your favorite color.

Figure 6.17 Failure to select a color results in this
error message.

6. Save the script, place it in the same
directory as register.html (on your
PHP-enabled server), and test it in your
Web browser again, using different color
options (Figures 6.16 and 6.17).

v Tip
B PHP also allows you to write elseif as
two words, if you prefer:
if (conditionl) {
statement(s);
} else if (condition2) {
2statement(s);

141

413S73 ONISN

THE SwiTcH CONDITIONAL

Chapter 6

The Switch Conditional

Once you get to the point where you have
longer if-elseif-else conditionals, you may
find that you can save time and clarify your
programming by using a switch conditional
instead. The switch conditional takes only one
possible condition, normally just a variable:

switch ($variable) {
case 'valuel':
Istatement(s);
break;
case 'value2':
2statement(s);
break;
default:
3statement(s);
break;

}

It’s critical that you comprehend how a
switch conditional works in order to use it
properly. Starting at the beginning, once PHP
finds the case that matches the value of the
conditional variable, it continues to execute
those statements until it either comes to the
end of the switch conditional (the closing
curly brace) or hits a break statement, at
which point it exits the switch construct.
Thus, it'’s imperative that you close every case
—even the default case, for consistency’s
sake—with a break (the sidebar “Break, Exit,
Die, and Continue” discusses this keyword in
more detail).

This previous switch conditional is like a
rewrite of this:

if ($variable == 'valuel') {
Istatement(s);

} elseif ($variable == 'value2') {
2statement(s);

} else {
3statement(s);

3

Script 6.8 Switch conditionals can simplify
complicated if-elseif conditionals.
eece =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

|6 <title>Registration</title>

:7 <style type="text/css" media="screen">
| 8 .error { color: red; }

[9 </style>

|10 </head>

[11 <body>

|12 <h2>Registration Results</h2>

13 <?php // Script 6.8 - handle_reg.php #7

14 /* This script receives eight values from
register.html:

15 email, password, confirm, month, day,
year, color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>";

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>";

31 $okay = FALSE;

32 %

33

34 // Check the two passwords for equality:

35 if ($_POST['password'] !=

$_POST['confirm']) {

36 print '<p class="error">Your
confirmed password does not match the
original password.</p>";

37 $okay = FALSE;

38 }

39

(script continues on next page)

142

Control Structures

Script 6.8 continued
8ece = Seript

|40 // Validate the birthday:
:41 $birthday = '';

| 42

:43 // Validate the month:

:44 if (is_numeric($_POST['month'])) {

| 45 $birthday = $_POST['month'] . '-";
:46 } else {

| 47 print '<p class="error">Please select
: the month you were born.</p>";

| 48 $okay = FALSE;

49}

| 50

|
|51 // Validate the day:

|52 if (is_numeric($_POST['day'1)) {

|53 $birthday .= $_POST['day'] . '-'";

|54 } else {

55 print '<p class="error">Please select
the day you were born.</p>';

56 $okay = FALSE;

57 %

58

59 // Validate the year:
60 if (is_numeric($_POST['year']) AND
(strlen($_POST['year']) == 4)) {

61
62 // Check that they were born before
2009.

63 if ($_POST['year'] >= 2009) {

64 print '<p class="error">Either you
entered your birth year wrong or
you come from the future!</p>";

65 $okay = FALSE;

66 } else {

67 $birthday .= $_POST['year'];

68 } /7 End of 2nd conditional.

69

70 } else { // Else for 1st conditional.

71

72 print '<p class="error">Please enter
the year you were born as four
digits.</p>";

73 $okay = FALSE;

74

75 '} // End of 1st conditional.
76

77 // Validate the color:
78 switch ($_POST['color']) {
79 case 'red':

your favorite color.</p>';
81 break;

(script continues on next page)

80 print '<p style="color:red;">Red is

Because the switch conditional uses the
value of $variable as its condition, it first
checks to see if $variable is equal to valuel
and, if so, executes Istatement(s).If not,

it checks to see if $variable is equal to
value2 and, if so, executes 2statement(s).
If neither condition is met, the default
action of the switch condition is to execute
3statement(s).

With this in mind, let’s rewrite the colors
conditional as a switch.

To use a switch conditional:

1. Open handle_reg.php (Script 6.7) in your
text editor or IDE, if it is not already.

2. Delete the extended colors conditional
(Script 6.8).

3. Begin the switch:
switch ($_POST['color']) {
As mentioned earlier, a switch con-
ditional takes only one condition:

avariable’s name. In this case, it’s
$_POST['color'].

4, Create the first case:
case 'red':
print '<p style="color:red;">Red
is your favorite color.</p>";
break;

The first case checks to see if
$_POST['color'] has avalue of red.

If so, then the same print statement is
executed as before. Then you include a
break statement to exit the switch.

continues on next page

143

TVYNOILIANO) HOLIMS 3H]

THE SwiTcH CONDITIONAL

Chapter 6

5. Add a case for the second color:
case 'yellow':
print '<p style="color:yellow;">
Yellow is your favorite color.
</p>";
break;

6. Add cases for the remaining colors:
case 'green':
print '<p style="color:green;">
Green is your favorite color.
</p>";
break;
case 'blue':
print '<p style="color:blue;">
Blue is your favorite color.
</p>";
break;

7. Add adefault case and complete the
switch:
default:
print '<p class="error">Please
select your favorite color.
</p>";
$okay = FALSE;
break;
} // End of switch.
This default case is the equivalent of
the else clause used in the original
conditional.

Script 6.8 continued

8o0e =) Seript

82 case 'yellow':

83 print '<p style="color:yellow;">
Yellow is your favorite color.
</p>';

84 break;

85 case 'green':

86 print '<p style="color:green;">
Green is your favorite color.</p>';

87 break;

88 case 'blue':

89 print '<p style="color:blue;">Blue
is your favorite color.</p>';

20 break;

91 default:

92 print '<p class="error">Please
select your favorite color.</p>';

93 $okay = FALSE;

94 break;

95 } // End of switch.

96

97 // If there were no errors, print a

success message:

98 if ($okay) {

99 print '<p>You have been successfully

registered (but not really).</p>";

100 print "<p>You entered your birthday as

$birthday.</p>";

101

102 7>

103 </body>

104 </html>

144

Control Structures

e\non Registration =

E | (http://localhost/handle_reg.php v ;

Registration Results

Green is your favorite color.
You have been successfully registered (but not really).

You entered your birthday as 1-12-1954.

Figure 6.18 The handling script still works the same,
whether the user selects a color...

(L HS N &) Registration =

l " http://localhost/handle_reg.php {_‘r? l

Registration Results

Please select your favorite color.

Figure 6.19 ...or fails to.

8. Save your script, place it in the same
directory as register.html (on your PHP-
enabled server), and test it in your Web
browser again (Figures 6.18 and 6.19).

v Tips

B A default case isn't required in your
switch conditional (you could set it up so
that if the value isn't explicitly met by one
of the cases, nothing happens), but if it’s
used, it must be listed as the last case.

B Ifyoure usinga string in your switch con-
ditional as the case value, keep in mind
that it’s case sensitive, meaning that Value
won't match value.

Break, Exit, Die, and Continue

PHP includes many language constructs: tools that aren't functions but still do something in
your scripts. The first of these is break, which is demonstrated in the switch. Break exits the
current structure, be it a switch, an if-else conditional, or aloop.

Similar to this is continue, which terminates the current iteration of the loop. Any remaining
statements within the loop aren’t executed, but the loops condition is checked again to see if
the loop should be entered.

Exit and die are more potent versions of break (and theyre synonymous). Instead of exiting
the current structure, these two language constructs terminate the execution of the PHP
script. Therefore, all PHP code after a use of exit or die is never executed. For that matter,
any HTML after these constructs is never sent to the Web browser. You'll see die used most
frequently in code that accesses files and databases. Exit is often used in conjunction with
the header() function.

145

TVYNOILIANO) HOLIMS 3H]

THE FOR LooP

Chapter 6

The for Loop

Loops are the final type of control structure
discussed in this chapter. As suggested ear-
lier, you use loops to execute a section of code
repeatedly. You may want print something a
certain number of times, or you may want to
print out each value of an array. For either of
these cases, and many more, you can use a
loop. (The latter example is demonstrated in
the next chapter.)

PHP supports three kinds of loops: for, while,
and foreach. The while loop is similar to for,
but it's used most frequently when retrieving
values from a database or reading from a text
file (it’s introduced in the sidebar). Foreach is
related to using arrays and is introduced in
the next chapter.

The for loop is designed to perform specific
statements for a determined number of
iterations (unlike while, which runs until the
condition is FALSE—similar, but significantly
different, concepts). You normally use a
dummy variable in the loop for this purpose:

for (initial expression; condition;
closing expression) {
statement(s);

}

The initial expression is executed once: the
first time the loop is called. Then the condi-
tion is used to determine whether to execute
the statements. The closing expression is
executed each time the condition is found to
be TRUE, but only after the statements are
executed (Figure 6.20).

Here's a simple loop that prints out the num-
bers 1 through 10:

for ($v = 1; $v <= 10; $v++) {
print $v;
3

To practice with the for loop, you'll use it
to create the day drop-down menu in the
HTML form.

initial
expression

after
expression

do this if
TRUE

Exit loop
once
condition is
FALSE

Figure 6.20 This flowchart represents how a for loop
is executed in PHP.

146

Control Structures

Script 6.9 This script uses a PHP for loop to
dynamically generate the day of the month drop-

down menu.

806 =1 Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

[3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

: content="text/html; charset=utf-8"/>

|6 <title>Registration Form</title>

|7 </head>

|8 <body>

:9 <!-- Script 6.9 - register.php -->

|10 <div><p>Please complete this form to

| register:</p>

11

12 <form action="handle_reg.php"

method="post">

13

14 <p>Email Address: <input type="text"
name="email" size="30" /></p>

15

16 <p>Password: <input type="password"
name="password" size="20" /></p>

17

18 <p>Confirm Password: <input
type="password" name="confirm"
size="20" /></p>

19

20 <p>Date Of Birth:

21 <select name="month">

22 <option value="">Month</option>

23 <option value="1">January</option>

24 <option value="2">February</option>

25 <option value="3">March</option>

26 <option value="4">April</option>

27 <option value="5">May</option>

28 <option value="6">June</option>

29 <option value="7">July</option>

30 <option value="8">August</option>

31 <option value="9">September</option>

32 <option value="10">0ctober</option>

33 <option value="11">November</option>

34 <option value="12">December</option>

35 </select>

(script continues on next page)

To write a for loop:

1. Openregister.html (Script 6.1) in your
text editor or IDE, if it is not already.

2. Delete all the lines between <option
value="">Day</option>and </select>
(lines 38-68 of the original script), which
create the different drop-down options
(Script 6.9).

3. Create a new PHP section:
<?php
Because PHP can be embedded within
HTML, you'll use it to populate the drop-
down menu. You begin with the standard
PHP tag,

4. Create a for loop to print out 31 days as
menu options:

for ($d = 1; $d <= 31; $d++) {
print "<option value=\"$d\">$d
</option>\n";

}

The loop begins with creating a dummy
variable called $d. On the first use of the
loop, this variable is set to 1. Then, as
long as $d is less than or equal to 31, the
contents of the loop are executed. These
contents are the print() line, which
creates code like <option value="1">1
</option>, followed by a return (created
with \n). After this statement is executed,
the $d variable is incremented by one.
Then the condition ($d <= 31)is checked
again, and the process is repeated.

continues on next page

147

d007 ¥04 3H]

THE FOR LooP

Chapter 6

5. Close the PHP section:

7>

6. Save the file as register.php.

You must save the file with the . php
extension now, in order for the PHP code
to be executed.

7. Place the file in the proper directory for
your PHP-enabled server and test it in
your Web browser (Figure 6.21).

Aslong as this script is in the same direc-
tory as handle_reg.php, you can even fill
out and submit the form as you would
with the plain HTML version.

Script 6.9 continued

[E-ESNs) = Seript
36 <select name="day">
37 <option value="">Day</option>
38 <?php // Print out 31 days:
39 for ($d = 1; $d <= 31; $d++) {
40 print "<option value=\"$d\">$d
</option>\n";
41 }
42 7>
43 </select>
44 <input type="text" name="year"
value="YYYY" size="4" /></p>
45
46 <p>Favorite Color:
47 <select name="color">
48 <option value="">Pick One</option>
49 <option value="red">Red</option>
50 <option value="yellow">Yellow</option>
51 <option value="green">Green</option>
52 <option value="blue">Blue</option>
53 </select></p>
54
55 <input type="submit" name="submit"
value="Register" />
56
57 </form>
58
59 </div>
60 </body>
61 </html>
en0n Registration Form =

Q http:/ /localhost/register.php

Please complete this form to register:

Email Address: | |

Password: |

Confirm Password: | |
58 (oay 8 [yrvv |
Favorite Color:

Date Of Birth: [Month

Figure 6.21 The form looks exactly as it did before,
even though PHP created some of the HTML.

148

Control Structures

8. If desired, view the HTML source code
(Figure 6.22).

v Tips

B Just as you can write the if conditional
on one line if you have only one state-
ment, you can do the same with the while
and for loops. Again, though, this isn't
recommended.

B Loops can be nested inside each other.
You can also place conditionals within
loops, loops within conditionals, and so
forth.

B Pay close attention to your loop’s condi-
tion so that the loop ends at some point.
Otherwise, you'll create an infinite loop,
and the script will run and run and run.

<option value="12">December</option> ~
</select>

<select name="day">

<option value="">Day</option>
<option value="1">1</option>
<option value="2">2</option>

<option value="3">3</option>

<option value="4">4</option>

<option value="5">5</option=>

<option value="6">6</option>

<option value="7">7</option>

<option value="8">8</option>

<option value="9">9</option>

<option value="10">10</option>

<aption value="11">11</cption>

<option value="12">12</option>

<option value="13">13</option>

<option value="14">14</option>
A
v
2

<option value="15">15</option>
<option value="16">16</option>
<option value="17">17</cption>
<option value="18">18</option>
<option value="19">19</option>
<option value="20">20</option>
<option value="21">21</option>
<option value="22">22</option>
<option value="23">23</cption>
<option value="24">24</option>
<option value="25">25</option>
<option value="26">26</option>
<option value="27">27</option>
<option value="28">28</option>
<option value="23">29</cption>
<option value="30">30</option>
<option value="31">31</option>

</select>

<input type="text" name="year" value="¥YYYY" si

Figure 6.22 If you view the

I HTML source code for the
.F———————(—————— BRI form, you'll see the data

] generated by the for loop.

149

d007 ¥04 3H]

THE FOR LooP

Chapter 6

The while Loop

The second of the three types of loops that exist in PHP—the while loop—is designed to
continue working as long as the condition you establish is TRUE. Like the for loop, it checks
the value of the condition before each iteration. Once the condition becomes FALSE, the while
loop is exited:

while (condition) {
statement(s);

}

The main difference between the for and the while is that while doesn't include a system for
setting initial conditions or for executing closing expressions

You also have the option of using the do. . .while loop, which guarantees that the statements
are executed at least once (this isn't necessarily true of the while loop):

do {
statement(s);
} while (condition);

Although there is a fair amount of overlap regarding when you can use the two major loop
constructs (while and for), you'll discover as you program that sometimes one is more logical
than the other. The while loop is frequently used in the retrieval of data from a database (see
Chapter 12, “Introduction to Databases”).

150

USING ARRAYS

The next—and last—variable type you'll learn
about in this book is the array. Arrays are
significantly different than either numbers

or strings, and you can't make the most of
programming in PHP without comprehend-
ing them.

Because of their unique nature, this chapter
will cover arrays more deliberately and slowly
than the other variable types. The chapter
begins with a thorough introduction to the
concept, along with the basics of creating
and using arrays. Then it covers multidimen-
sional arrays and some of the array-related
functions. The chapter concludes with array-
string conversions and a demonstration on
how to create an array from an HTML form.

151

SAVYYY ONISN

WHAT Is AN ARRAY?

Chapter 7

What Is an Array?

Arrays constitute a complicated but very
useful notion. Whereas numbers and strings
are scalar variables (meaning they only ever
have a single value), an array is a collection of
multiple values assembled into one overrid-
ing variable. An array can consist of numbers
and/or strings (and/or other arrays), which
allows this one variable to hold exponentially
more information than a simple string or
number can. For example, if you wanted to
create a grocery list using strings, your code
would look something like this:

$iteml = 'apples';
$item2 = 'bananas';
$item3 = 'oranges';

For each added item, youd need to create a
new string. This approach is cumbersome,
and it makes it difficult to refer back to the
entire list or any specific value later in your
code. You can greatly simplify matters by
placing your entire list into one array (say,
$items), which contains everything you need
(Table 7.1).

As an array, your list can be added to, sorted,
searched, and so forth. With this context in
mind, let’s look into the syntax of arrays.

Table 7.1
Grocery List Array
ITEM NUMBER ITEM
1 apples
2 bananas
3 oranges

152

Using Arrays

Superglobals and You

Throughout this book, you've already dealt
with some arrays: $_SERVER, $_GET, and
$_POST. These are all called superglobals,
along with $_COOKIE, $_SESSION, and $_ENV.

The $_POST array receives all the data sent
from a form using the POST method. Its
indexes are the names of the form inputs,
and its values are the values for those
form elements. Therefore, $_POST['name"']
refers to the value typed in a form input
created by the code

<input type="text" name="name" />

Similarly, $_GET refers to data sent from a
form using the GET method or from data
otherwise passed in the URL. $_COOKIE
refers to data stored in a cookie, and
$_SESSION refers to data stored in a
session (you'll encounter these two in
Chapter 9, “Cookies and Sessions”).
$_ENV is like $_SERVER, containing values
pertaining to the computer on which
PHP is running.

Syntactical rules for arrays

The other variable types you've dealt with—
numbers and strings—have a variable name
and a corresponding value (for example,
$first_name could be equal to Larry). Arrays
also have a name, derived using the same
conventions—they:

¢ Begin with a dollar sign.
& Continue with a letter or underscore.

¢ Finish with any combination of letters,
numbers, or the underscore.

But arrays differ in that they contain multiple
elements (think of each row in Table 7.1 as an
element). An element consists of an index or
key (the two words can be used interchange-
ably) and a value. In Table 7.1, the Item
Number is the key, and the Item is the value.

An array's index is used as a reference point
to the values. An array can use either num-
bers or strings as its keys (or both), depend-
ing on how you set it up.

Generally, when you use an array it looks the
same as any other variable, except that you
include a key in square brackets ([]J) when
referring to particular values. So, $items
refers to the array as a whole, but $items[1]
points to a specific element in the array (in
this example, apples).

153

¢AVHYEY NV S| LVHM

CREATING AN ARRAY

Chapter 7

Creating an Array

The formal method of creating an array is to
use the array() function. Its syntax follows
the form shown here:

$list = array ('apples', 'bananas',
'oranges');

Arrays automatically begin their indexing at
0, unless otherwise indicated. In this exam-
ple—which doesn't specify an index for the
elements—the first item, apples, is automati-
callyindexed at @, the second item at 1, and
the third at 2.

You can assign the index when using array():

$list = array (1 => 'apples', 2 =>
'bananas', 3 => 'oranges');

Because PHP is very liberal when it comes

to blank space in your scripts, you can make
this structure easier to read by writing it over
multiple lines:

$list = array (

1 => "apples',

2 => 'bananas',

3 => 'oranges'

);

Finally, the index value you specify doesn't
have to be a number—you can use words as
well. This indexing technique is practical for
making more meaningful lists. As an exam-
ple, you could create an array that records
the soup of the day for each day of the week,
as in the following script. This example will
also demonstrate how you can, and cannot,
print out an array.

154

Using Arrays

Script 7.1 The $soups array contains three elements
and uses strings for its keys.

8coe =) Script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

|6 <title>No Soup for You!</title>

|7 </head>

|8 <body>

|19 <h1>Mmm. . .soups</hl>

|10 <?php // Script 7.1 - soupsl.php

11 /* This script creates and prints out an
array. */

13

14 // Create the array:

15 $soups = array (

16 'Monday' => 'Clam Chowder',

17 'Tuesday' => 'White Chicken Chili',
18 'Wednesday' => 'Vegetarian'

19);

20

21 // Try to print the array:

22 print "<p>$soups</p>";

23

24 // Print the contents of the array:
25 print_r ($soups);

26

27 7>

28 </body>
29 </html>

12 // Address error management, if you want.

To create an array:

1. Begin a new document in your text editor

or IDE (Script 7.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>No Soup for You!</title>
</head>
<body>
<h1>Mmm. . .soups</hl>

. Begin the PHP section of the script and

address error handling, if necessary:
<?php // Script 7.1 - soupsl.php

If you don't have display_errors enabled,
oriferror_reportingis set to the wrong
level, see Chapter 3, “HTML Forms and
PHP;” for the lines to include here to alter
those settings.

. Use the array() function to create

an array:
$soups = array (

'"Monday"' => "Clam Chowder',
'Tuesday' => '"White Chicken Chili',
'Wednesday' => 'Vegetarian'

Js

This is the proper format for initializing
(creating and assigning a value to) an
array in PHP, using strings as the indices.
Because both the keys and values are
strings, you surround them with single
quotation marks.

Do not inadvertently add a comma

after the final array element (indexed at
Wednesday) as this will cause a parse error.

continues on next page

155

AVIYY NV ONILVIY)

CREATING AN ARRAY

Chapter 7

4. Attempt to print the array:
print "<p>$soups</p>";
Asyoull soon see, arrays are also different

in that they can't be printed the way youd
print other (scalar) variables.

5. Use the print_r() function to print out
the array differently:
print_r ($soups);
In Chapter 2, “Variables,” you learned how
to use the print_r() function to show the
contents and structure of any variable.
You use it here so that you can see the
difference between the way this function
and print() work with arrays.

6. Close the PHP and the HTML sections:
7>
</body>
</html>

7. Save your document as soupsl.php,
place it in the proper directory for your
PHP-enabled server, and test it in
your Web browser (Figure 7.1).

Do remember to run the PHP script
through a URL.

v Tips

B The practice of beginning any index at @
is standard in PHP and most other pro-
gramming languages. As unnatural as
this counting system may seem, it's here
to stay, so you have two possible coping
techniques. First, manually start all of
your arrays indexed at position 1. Second,
unlearn a lifetime of counting from 1.
You can decide which is easier, but most
programmers just get used to this odd
construct.

%2 No Soup for You! - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

(|j ‘http:,l’;’lncalhost:BDUD,l’snupsl.th f} '|

Mmm...soups

Notice: Array to stnng conversion m C:'Program Files'Abyss
Web Serverihtdocs'soupsl.php on hne 22

ALrray

Array { [Monday] == Clam Chowder [Tuesday] == Whate
Chicleen Chili [Wednesday] => Vegetarian)

Figure 7.1 Because an array is structured differently
than other variable types, a request to print an array
results in the word Array (and an error, depending
upon the version of PHP and its settings). On the
other hand, the print_r() function prints the array’s
contents and structure.

156

Using Arrays

© No Soup for You! - Mozilla Firefox
File Edit Wew History Bookmarks Tools Help

l\ |j |http:,l’,l’localhost:SDDD;’soupsl.php {_:f '|

Mmm...soups

Array

array(3) { [u'Ionday']=> unicode(12) "Clam Cheowder"
[w"Tuesday" == unicode(1%) "White Chicken Chili"
[w"Wednesday"]=> ucode(10) "Vegetanan" }

Figure 7.2 The var_dump() function (used with Script
7.1 instead of the print_r() function) shows how
many elements are in an array and how long each
string value is.

You must refer to an array’s elements
using the same index used to create the
array. In the $soups example, $soups[0]
has no value even though the array obvi-
ously has a first element (the first element
being indexed at @ numerically).

If you use the array() function to define
an index, you can associate the first index,
and the others will follow sequentially. For
example:

$list = array (1 => 'apples’,
'bananas', 'oranges');

Now bananas is indexed at 2 and oranges
at 3.

The range() function can also be used to
create an array of items based on a range
of values. Here are two examples:

$ten = range (1, 10);
$alphabet = range ('a', 'z");

As of PHP version 5, the range() function
includes a step parameter that lets you
specify increments:

$evens = range (0, 100, 2);

If you use the var_dump() function in
your script in lieu of print_r(), it shows
not only the contents of the array but also
its structure in a more detailed format
(Figure 7.2). As of PHP 6, this function
also indicates if a string uses Unicode
encoding.

An array whose keys are numbers is
called an indexed array. If the keys are
strings, it's referred to as an associative
array. Other languages refer to associative
arrays as hashes.

157

AVIYY NV ONILVIY)

ADDING ITEMS TO AN ARRAY

Chapter 7

Adding Items to an Array

In PHP, once an array exists, you can add
extra elements to the array with the assign-
ment operator (the equals sign), in a way
similar to how you assign a value to a string
or anumber. When doing so, you can either
specify the key of the added element or not,
but in either case, you must refer to the array
with the square brackets. To add two items to
the $11ist array, youd write

$list[] = 'pears';
$1list[] = "tomatoes';

If you don't specify the key, each element is
appended to the existing array, indexed with
the next sequential number. Assuming this

is the same array from the preceding section,
which was indexed at 1, 2, and 3, pears is now
located at 4 and fomatoes at 5.

If you do specify the index, the value is
assigned at that location. Any existing value
already indexed at that point is overwritten,
like so:

$1ist[3] = 'pears';
$1ist[4] = 'tomatoes';

Now, the value of the element in the fourth
position of the array is fomatoes, and no ele-
ment of $11ist is equal to oranges (that value
was overwritten by pears). With this in mind,
unless you intend to overwrite any existing
data, you'll be better off not naming a specific
key when adding values to your arrays.
However, if the array uses strings for indices,
you'll probably want to specify keys so that
you don't end up with an odd combination of
string and number keys.

To test this process, in the following task
you'll rewrite soupsl.php to add more
elements to the array. In order to see the
difference adding more elements makes,
you'll print out the number of elements in
the array before and after the new additions.

Deleting Arrays and
Array Elements

You won't frequently need to delete an
individual item from an array, but it's
possible to do so using the unset() func-
tion. This function eliminates a variable
and frees up the memory it used. When
applied to an array element, that element
is deleted:

unset($array[4]);
unset($array['name']);

If you apply unset() to an entire array or
any other variable type, the whole variable
is deleted:

unset($array);
unset($string);

You can also reset an array (empty it with-
out deleting the variable altogether) using
the array() function:

$array = array();

This has the effect of initializing the vari-
able: making it exist and defining its type
without assigning a value.

158

Using Arrays

Script 7.2 You can directly add elements to an array
one at a time by assigning each element a value
with the assignment operator. The count() function
will help you keep track of how many elements the
array contains.

ece 51 Seripe

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtml1-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>

:6 <title>No Soup for You!</title>

:7 </head>

| 8 <body>

[9 <hl>Mmm...soups</hl>

|10 <?php // Script 7.2 - soups2.php

:11 /* This script creates and prints out an

| array. */

12 // Address error management, if you want.

13

14 // Create the array:

15 $soups = array (

16 'Monday' => 'Clam Chowder',

17 'Tuesday' => 'White Chicken Chili',

18 'Wednesday' => 'Vegetarian'

19);

20

21 // Count and print the current number of
elements:

22 $countl = count ($soups);

23 print "<p>The soups array originally had
$countl elements.</p>";

24

25 // Add three items to the array:

26 $soups['Thursday'] = 'Chicken Noodle';

27 $soups['Friday'] = 'Tomato';

28 $soups['Saturday'] = 'Cream of Broccoli';

29

30 // Count and print the number of elements
again:

31 $count2 = count ($soups);

32 print "<p>After adding 3 more soups, the
array now has $count2 elements.</p>";

33

34 // Print the contents of the array:

35 print_r ($soups);

36

37 7>

38 </body>

39 </html>

Just as you can find the length of a string—
how many characters it contains—using
strlen(), you can determine the number of
elements in an array, using count():

$how_many = count($array);

To add elements to an array:

1.

2.

3.

Open soupsl.php in your text editor or
IDE, if it is not already.

After the array is initialized using

array(), add the following (Script 7.2):

$countl = count ($soups);

print "<p>The soups array originally
had $countl elements.</p>";

The count() function determines how

many elements are in $soups. By assign-

ing that value to a variable, you can easily

print it out.

Add three more elements to the array:

$soups['Thursday'] = 'Chicken
Noodle';

$soups['Friday'] = 'Tomato';

$soups['Saturday'] = 'Cream of
Broccoli';

This code adds three more soups—
indexed at Thursday, Friday, and
Saturday—to the existing array.

Recount how many elements are in the
array, and print this value.
$count2 = count ($soups);
print "<p>After adding 3 more
soups, the array now has $count2
elements.</p>";
This second print() call is a repetition of
the first, letting you know how many ele-
ments the array now contains.

continues on next page

159

AV¥¥Y NV OL SWiL| ONIaay

ADDING ITEMS TO AN ARRAY

Chapter 7

5.

If you want to, delete the print
"<p>$soups</p>"; line.

This line isn't needed anymore, so you can
get rid of it (you now know that you can't
print an array that easily).

Save your script as soups2.php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 7.3).

v Tips

Be very careful when you directly add
elements to an array. There's a correct
way to doit ($array[] = 'Add This'; or
$array[1] = 'Add This';)and anincor-
rect way ($array = 'Add This';).Ifyou
forget to use the brackets, the added value
will replace the entire existing array, leav-
ing you with a simple string or number.

The code
$array[] = 'Value';

creates the $array variable if it doesn't
yet exist.

While working with these arrays, I'm
using single quotation marks to enclose
both the keys and the values. Nothing
needs to be interpolated (like a vari-
able), so double quotation marks aren’t
required. It’s perfectly acceptable to use
double quotation marks, though, if you
want to.

You don't (and, in fact, shouldn't) quote
your keys if theyre numbers, variables, or
constants (you'll learn about constants in
Chapter 8, “Creating Web Applications”).
For example:

$day = "Sunday';
$soups[$day] = 'Mushroom';
The sizeof () function is an alias to

count(). It also returns the number of
elements in an array.

3 No Soup for You! - Mozilla Firefox
File Edit ¥iew History Bookmarks Tools Help

l\ |j |http:,l’,l’lmcalhnst:SDDDIsnupSZ.php {_\\f v|

Mmm...soups

The soups array onginally had 3 elements
After adding 3 more soups, the array now has 6 elements.

Array ([Monday] => Clam Chowder [Tuesday] => White
Chicken Chili [Wednesday] =» Vegetarian [Thursday] ==
Chicken Moodle [Friday] == Tomato [Saturday] == Cream
of Broccoli)

Figure 7.3 A direct way to ensure that the new
elements were successfully added to the array is to
count the number of elements before and after you
make the additions.

Merging Arrays

PHP has a function that allows you to
append one array onto another. Think of it
as concatenation for arrays. The function,
array_merge(), works like so:

$new_array = array_merge($arrayl,
$array2);

You could also write the soups2.php page
using this function:

$soups2 = array (

'Thursday' => 'Chicken Noodle',
'Friday' => 'Tomato',

'Saturday' => 'Cream of Broccoli',
)

$soups = array_merge($soups,
$soups2);

You could even accomplish this result
with the plus sign (thus adding two
arrays together):

$soups = $soups + $soups2;
or

$soups += $soups?;

160

Using Arrays

Accessing Array Elements

Regardless of how you establish an array, theres
only one way to retrieve a specific element (or
value) from it, and that is to refer to its index:

print "The first item is $array[0]";

If the array uses strings for indexes, which
should be quoted, you must adjust for the
quotation marks youd use around the index,
because they conflict with the print() syn-
tax. This line will cause problems:

print "The total of your order comes to
$array['total']";

To combat this issue, you can wrap the whole
array construct within curly braces:

print "The total of your order comes to
{$array["total']}";

Ironically, the feature that makes arrays so
useful—being able to store multiple values
in one variable—also gives it a limitation
the other variable types don't have: You
must know the keys of the array in order
to access its elements. If the array was set
using strings, like the $soups array, then
referring to $soups[1] points to nothing.
For that matter, because variables are case
sensitive, $soups['monday '] is meaning-
less because Clam Chowder was indexed at
$soups["'Monday'].

The fastest and easiest way to access all the
values of an array is to use a foreach loop.
This construct loops through every element
of an array:

foreach ($array as $key => $value) {
print "Key is $key. Value is
$value";

}

You can now write a new soups script to use
this knowledge. Instead of merely being able
to print out how many elements are in an
array (as youve done to this point), you can
access the actual values.

161

SINIW3T3 AVIAY ONISSIIIY

ACCESSING ARRAY ELEMENTS

Chapter 7

To print the values of any array:

1.

Begin a new document in your text editor
or IDE (Script 7.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>No Soup for You!</title>
</head>
<body>
<h1>Mmm. . .soups</h1>

Start the PHP section of the page and
address error management, if you want:

<?php // Script 7.3 - soups3.php

Create the $soups array:

$soups = array (

'Monday' => "Clam Chowder',
'Tuesday' => 'White Chicken Chili',
'Wednesday' => 'Vegetarian',
'Thursday' => 'Chicken Noodle',
'"Friday' => 'Tomato',

'Saturday' => 'Cream of Broccoli'
);

Here you create the entire array at once,
although you could use the same method

(creating the array in steps) as in the
preceding script.

Script 7.3 A foreach loop is the easiest way to access
every element in an array.

eoce = Script
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
: 1.0 Transitional//EN"
:2 "http://www.w3.0rg/TR/xhtml1/DTD/
| xhtmll-transitional.dtd">
:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">
:4 <head>
:5 <meta http-equiv="Content-Type"
| content="text/html; charset=utf-8"/>
:6 <title>No Soup for You!</title>
|7 </head>
:8 <body>
|19 <h1>Mmm. . .soups</h1>
:10 <?php // Script 7.3 - soups3.php

11 /* This script creates and prints out an

array. */

12

13 // Address error management, if you want.
14

15 // Create the array:

16 $soups = array (

17 'Monday' => 'Clam Chowder',

18 'Tuesday' => 'White Chicken Chili',

19 'Wednesday' => 'Vegetarian',

20 'Thursday' => 'Chicken Noodle',

21 'Friday' => 'Tomato',

22 'Saturday' => 'Cream of Broccoli'

23);

24

25 // Print each key and value:

26 foreach ($soups as $day => $soup) {

27 print "<p>$day: $soup</p>\n";

28 }

29

30 7>

31 </body>

32 </html>

162

Using Arrays

©J No Soup for, You! - Mozilla Firefox |Z

File Edit Yiew History Bookmarks Tools Help

I: |j |http:,l',l'localhost:EEDDD,I'soupSS.php ﬁ::? '|

Mmm...soups

Wonday: Clam Chowder
Tuesday: White Chicken Chil
Wednesday: Vegetarian
Thursday: Chicken Moodle
Friday: Tomato

Saturday, Cream of Broccol

Figure 7.4 The execution of the loop for every
element in the array generates this page. The foreach
construct allows the script to access each key and
value without prior knowledge of what they were.

. Create a foreach loop to print out each

day’s soup:

foreach ($soups as $day => $soup) {
print "<p>$day: $soup</p>\n";

}

The foreach loop iterates through every
element of the $soups array, assigning
each index to $day and each value to
$soup. These values are then printed out
within HTML paragraph tags. The print
statement concludes with a newline char-
acter (created by \n), which will affect the
HTML source code of the page.

. Close the PHP section and the HTML page:

7>
</body>
</html>

. Save the page as soups3.php, place it

in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 7.4).

163

SINIW3T3 AVIAY ONISSIIIY

ACCESSING ARRAY ELEMENTS

Chapter 7

v Tips

One option for working with arrays is

to assign a specific element’s value to a
separate variable using the assignment
operator:

$total = $array[1];

By doing this, you can preserve the origi-
nal value in the array and still manipulate
it separately as a variable.

If you only need to access an array’s
values (and not its keys), you can use this
foreach structure:

foreach ($array as $value) {
// Do whatever.

}

Remember that the curly braces are

used to avoid errors when printing array
values that have strings for keys. Here's
an example where using quotation marks
is not problematic, so the curly braces
aren't required:

$name = trim ($array['Name']);
Another way to access all of an array’s
elements is to use a for loop:

for ($n = 0; $n < count($array);
$n++) {
print "The value is $array[$n]";

164

Using Arrays

Creating Multidimensional
Arrays

Multidimensional arrays are both simple and
complicated at the same time. The structure
and concept may be somewhat difficult to
grasp, but creating and accessing multidi-
mensional arrays in PHP is surprisingly easy.

A multidimensional array is used so that
you can create an array containing more
information than a standard array. This is
accomplished by using other arrays for val-
ues instead of just strings and numbers. For
example:

$fruits = array ('apples', 'bananas',
'oranges');

$meats = array ('steaks', 'hamburgers',
"pork chops');

$groceries = array (

'fruits' => $fruits,

'meats' => $meats,

'other' => 'peanuts',

'cash' => 30.00

J;

This array, $groceries, now consists of one
string (peanuts), one floating-point number
(30.00), and two arrays ($fruits and $meats).

Pointing to an element in an array within an
array is tricky. The key (pardon the pun) is to
continue adding indices in square brackets as
necessary. So in this example, bananas is at
$groceries['fruits'][1].

First, you point to the element (in this case,
an array) in the $groceries array, by using
['fruits']. Then, you point to the element
in that array based on its position—it’s the
second item, so you use the index [1].

In this next task, you'll write a script that
creates another multidimensional array
example.

165

SAVYUY TYNOISNIWIAILINN ONILYIY)

CREATING MULTIDIMENSIONAL ARRAYS

Chapter 7

To use multidimensional arrays:

1.

Begin a new document in your text editor

or IDE (Script 7.4):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>My Books and Chapters
</title>

</head>
<body>

Create the initial PHP tags, and address
error management, if necessary:

<?php // Script 7.4 - books.php

Create the first array:

$phpvgs = array (1 => 'Getting
Started', 'Variables', 'HTML Forms
and PHP', 'Using Numbers');

To build up the multidimensional array,
you'll create three standard arrays and
then use them as the values for the larger
array. This array (called $phpvgs, which

is short for PHP for the World Wide Web:
Visual QuickStart Guide) uses numbers
for the keys and strings for the values. The
numbers begin with 1 and correspond to
the chapter numbers. The values are the
chapter titles.

Script 7.4 The multidimensional $books array stores a
lot of information in one big variable.

eece =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
: 1.0 Transitional//EN"
:2 "http://www.w3.0org/TR/xhtml1/DTD/
: xhtmll-transitional.dtd">
:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">
:4 <head>
:5 <meta http-equiv="Content-Type"
| content="text/html; charset=utf-8"/>
:6 <title>My Books and Chapters</title>
:7 </head>
:8 <body>
:9 <?php // Script 7.4 - books.php

10 /* This script creates and prints out a
multidimensional array. */

11 // Address error management, if you want.

12

13 // Create the first array:

14 $phpvgs = array (1 => 'Getting Started',
'Variables', '"HTML Forms and PHP', 'Using
Numbers');

15

16 // Create the second array:

17 $phpadv = array (1 => 'Advanced PHP
Techniques', 'Developing Web
Applications', 'Advanced Database
Concepts', 'Security Techniques');

18

19 // Create the third array:

20 $phpmysql = array (1 => 'Introduction
to PHP', 'Programming with PHP',
'Creating Dynamic Web Sites',
'Introduction to MySQL');

21

22 // Create the multidimensional array:

23 $books = array (

24 'PHP VQS' => $phpvgs,

25 'PHP 5 Advanced VQP' => $phpadv,

26 'PHP 6 and MySQL 5 VQP' => $phpmysql

27);

28

(script continues on next page)

166

Using Arrays

Script 7.4 continued

eeceoe] Seript

29 // Print out some values:

30 print "<p>The third chapter of my first
book is <i>{$books['PHP VQS'][3]}</i>.
</p>";

31 print "<p>The first chapter of my second
book is <i>{$books['PHP 5 Advanced VQP']
[11}</i>.</p>";

32 print "<p>The fourth chapter of my fourth
book is <i>{$books['PHP 6 and MySQL 5
VQP'][4]1}</i>.</p>";

33

34 // See what happens with foreach:

35 foreach ($books as $key => $value) {

36 print "<p>$key: $value</p>\n";

37 3

38

39 7>

40 </body>

41 </html>

4. Create the next two arrays:

$phpadv = array (1 => 'Advanced
PHP Techniques', 'Developing Web
Applications', 'Advanced Database
Concepts', 'Security Techniques');

$phpmysql = array (1 => 'Introduction
to PHP', 'Programming with PHP',
'Creating Dynamic Web Sites',
'Introduction to MySQL');

For each array, add only the books’ first

four chapters for simplicity’s sake.

. Create the main, multidimensional array:

$books = array (

"PHP VQS' => $phpvgs,

'"PHP 5 Advanced VQP' => $phpadv,
'"PHP 6 and MySQL 5 VQP' => $phpmysql
J;

The $books array is the master array for
this script. It uses strings for keys (which
are shortened versions of the book titles)
and arrays for values. You use the array()
function to create it, as you would any
other array.

. Print out the name of the third chapter of

the PHP Visual QuickStart Guide book:

print "<p>The third chapter of my
first book is <i>{$books['PHP
VQS'I[3]}</1i>.</p>";
Following the rules stated earlier, all you
need to do to access any individual chap-
ter name is to begin with $books, follow
that with the first index (['PHP VQS']),
and follow that with the next index ([3]).
Because youre placing this in a print()
call, you enclose the whole construct in
curly braces to avoid parse errors.

continues on next page

167

SAVYUY TYNOISNIWIAILINN ONILYIY)

CREATING MULTIDIMENSIONAL ARRAYS

Chapter 7

7. Print out two more examples:
print "<p>The first chapter of my
second book is <i>{$books['PHP 5
Advanced VQP'][1]3}</i>.</p>";
print "<p>The fourth chapter of my
fourth book is <i>{$books['PHP 6
and MySQL 5 VQP'][4]}</i>.</p>";
8. Run the $books array through a foreach
loop to see the results:
foreach ($books as $key => $value) {
print "<p>$key: $value</p>\n";
}
The $key variable stores each abbrevi-

ated book title, and the $value variable
ends up containing each chapter array.

9. Close the PHP section and complete the
HTML page:
7>
</body>
</html>

10. Save the file as books.php, place it in the
proper directory for your PHP-enabled
server, and test it in your browser
(Figure 7.5).

e My Books and Chapters - Mozilla Firefox
File Edit View Hitory Bookmarks Tooks Help

([| nttpustocalhost 8000 backs. php [

The third chapter of my first book is HTML Forms and PHF.

The first chapter of my second book is Advanced PHP Technigues
The fourth chapter of my fourth bool is Introduction to MySOL
Notice: Array to string conwersion in C:\Program Files\Abyss Web
Serverhtdocstbooks.php on line 36

PHP VOS5 Array

Notice: Array to string conversion in C:\Program Files'Abyss Web
Serverthtdacsthoolcs php on line 36

FPHP 5 Advanced VQF Array

Notice: Array to strmg conversion in C:\Program Files'Abyss Web
Server'htdocs'books.php on line 36

PHP 6 and MySQL 5 VOP: Array

Figure 7.5 The first three lines are generated by
print() statements. The last three show the results
of the foreach loop (and the notices come from
attempting to print an array).

168

Using Arrays

File Edit View History Bookmarks Tools Help

| \j |http:,l',l’loca\hast:SDDDJ‘books‘php ﬁ "

PHP VO3

Chapter 113 Getting Started
Chapter 2 1z Vanables

Chapter 3 13 HTML Forms and FHP
Chapter 4 1z Using Mumbers

PHP 5 Advanced VOF

Chapter 113 Advanced PHP Techniques
Chapter 2 1z Developing Web Applications
Chapter 3 1z Advanced Database Concepts
Chapter 4 1z Security Technicues

PHE & and My3QL 5 VQP

Chapter 11z Introduction to PHP
Chapter 2 13 Programming with PHP
Chapter 3 iz Creating Dynamic Web Sites
Chapter 4 15 Intreduction to MySQL

w

Figure 7.6 One foreach loop within
another can access every element of a two-
dimensional array.

©) My Books and Chapters - Mozilla Firefox
File Edt ‘“iew History Bookmarks Tools Help

| |:'] |http:HlucalhustJSDDD,ibDUks.php

array(3) {

[u"PHF VQS™]=>

array [4) {
[11=>
unicode (15) "Getting Started"
[2]=»
unicode (9) "Variables™
[3]=>
unicode (13) "HTHML Forms and PHP™
[4]1=>
unicode (13) "Using Numbers™

}

[W'PHP & Advanced VOP"]=»

arrav (4] {
[1]=>
unicode (23) "Advanced PHP Technicgues™
[21=>
unicode (27) "Developing Web Applications®™
[3]1=>
unicode (26) "Advanced Datsbase Concepts™
[4]=>
unicode (19) "Security Technigues™

}

[u"PHF 6 and My3QL 5 VOP"]=»

array [4) {
[11=>
unicode (19) "Introduction to PHP"™
[2]=»
unicode (20) "Programning with PHP™
[3]=>
unicode (26) "Creating Dynamic Teb Jites"
[4]1=>
unicode (21} "Introduction to My3QL"

<

Figure 7.7 The var_dump() function shows the
structure and contents of the $books array.

v Tips

B To access every element of every array,
you can nest two foreach loops like this
(Figure 7.6):
foreach ($books as $title =>

$chapters) {

print "<p>$title";
foreach ($chapters as $number =>
$chapter) {

print "
Chapter $number is
$chapter";

}
print '</p>"';
}

B Usingthe print_r() or var_dump()
function (preferably enclosed in HTML
<pre> tags for better formatting), you
can view an entire multidimensional
array (Figure 7.7).

B You can create a multidimensional array
in one statement by using a series of
nested array() calls (instead of using
several steps as in this example). However,
doing so isn't recommended, because it’s
all too easy to make syntactical errors
as a statement becomes more and more
nested.

B Although all the sub-arrays in this exam-
ple have the same structure (numbers
for indexes and four elements), that isn't
required with multidimensional arrays.

B To learn about the greater “Larry Ullman
Collection,” including the three books
referenced here, go to this book’s Web site:
www.DMCInsights.com/phpvqgs3/.

169

SAVYUY TYNOISNIWIAILINN ONILYIY)

www.DMCInsights.com/phpvqs3/

SORTING ARRAYS

Chapter 7

H Table 7.2

Sorting Arrays
. Array Sorting Functions

PHP supports a variety of ways to sort an v J
array (sort refers to an alphabetical sort Funcrion Sorrs BY
if the values being sorted are strings, or a sort() Values
numerical sort if the values being sorted are rsort() Values (inverse)
numbers). When you'e sorting an array, you asort() Values
must keep in mind that an array consists of arsort() Values (inverse)
pairs of keys and values. Thus, an array can be ksort() Keys
sorted based on the keys or the values. This is krsort() Keys (inverse)

further complicated by the fact that you can
sort the values and keep the corresponding
keys aligned, or you can sort the values and
have them be assigned new keys.

To sort the values without regard to the keys,
you use sort(). To sort these values (again,
without regard to the keys) in reverse order,
you use rsort(). The syntax for every sorting
function is:

function($array);
So, sort() and rsort() are used as follows:

sort($array);
rsort($array);

To sort the values while maintaining the
correlation between each value and its key,
you use asort(). To sort the values in reverse
while maintaining the key correlation, you
use arsort().

To sort by the keys while maintaining the
correlation between the key and its value,
you use ksort(). Conversely, krsort() sorts
the keys in reverse. Table 7.2 lists all these
functions.

Last, shuffle() randomly reorganizes the
order of an array.

As an example of sorting arrays, you'll create
alist of students and the grades they received
on a test, and then sort this list first by grade
and then by name.

MAINTAINS
Key-VALUES?

No
No
Yes
Yes
Yes
Yes

170

Using Arrays

Script 7.5 PHP provides a number of different
functions for sorting arrays, including arsort()
and ksort() (used here).

86 =1 Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

: 1.0 Transitional//EN"

:2 "http://www.w3.0org/TR/xhtml1/DTD/

: xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

: xhtml" xml:lang="en" lang="en">

:4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>

:6 <title>My Little Gradebook</title>

:7 </head>

:8 <body>

:9 <?php // Script 7.5 - sort.php

|10 /* This script creates, sorts, and prints
out an array. */

11

12 // Address error management, if you want.

13

14 // Create the array:

15 $grades = array(

16 'Richard' => 95,

17 'Sherwood' => 82,

18 'Toni' => 98,

19 'Franz' => 87,

20 'Melissa' => 75,

21 'Roddy' => 85

22);

23

24 // Print the original array:

25 print '<p>Originally the array looks like
this:
';

26 foreach ($grades as $student => $grade) {

27 print "$student: $grade
\n";

28 %}

29 print '</p>';

30

31 // Sort by value in reverse order, then
print again.

32 arsort ($grades);

33 print '<p>After sorting the array by
value using arsort(), the array looks
like this:
';

(script continues on next page)

To sort an array:

1.

Begin a new document in your text editor
or IDE (Script 7.5):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>My Little Gradebook</title>
</head>
<body>

Begin the PHP section, and address error
handling, if desired

<?php // Script 7.5 - sort.php

Create the array:
$grades = array(
'Richard' => 95,
'Sherwood' => 82,
'Toni' => 98,
'"Franz' => 87,
'Melissa' => 75,
'Roddy' => 85

Js

The $grades array consists of six students’
names along with their corresponding
grades. Because the grades are number
values, they don't need to be quoted when
assigning them.

continues on next page

171

SAVIYY ONILIOS

SORTING ARRAYS

Chapter 7

4.

Print a caption, and then print each ele-

ment of the array using a foreach loop:

print '<p>0Originally the array looks
like this:
';

foreach ($grades as $student =>
$grade) {

print "$student: $grade
\n";

3

print '</p>";

The caption tells you what point in the
script youTe at. At first, it prints the array
in the original order. To do that, you use
a foreach loop, where each index (the
student’s name) is assigned to $student,
and each value (the student’s grade) is
assigned to $grade. The final print() call
closes the HTML paragraph.

Sort the array in reverse order by value to
determine who has the highest grade:

arsort ($grades);

Because youre determining who has the
highest grade, you need to use arsort()
instead of asort(). The latter, which sorts
the array in numeric order, would order
the grades 75, 82, 85, and so on, rather
than the desired 98, 95, 87.

You also must use arsort() and not
rsort() in order to maintain the key-
value relationship (rsort() would elimi-
nate the student’s name associated with
each grade).

Print the array again (with a caption),

using another loop:

print '<p>After sorting the array
by value using arsort(), the array
looks like this:
';

foreach ($grades as $student =>
$grade) {

print "$student: $grade
\n";

3
print '</p>';

Script 7.5 continued

80e = Saipt

34 foreach ($grades as $student => $grade) {

35 print "$student: $grade
\n";

36}

37 print '</p>';

38

39 // Sort by key, then print again.

40 ksort ($grades);

41 print '<p>After sorting the array by
key using ksort(), the array looks like
this:
';

42 foreach ($grades as $student => $grade) {

43 print "$student: $grade
\n";

44 3

45 print '</p>';

46

47 7>

48 </body>

49 </html>

172

Using Arrays

£ My Little Gradebook - Mozilla Firefox
File FEdt Yew History Bookmarks Tools Help

(|j |http:ﬂflocalhost:ﬂDDU;’sort.php {_\j "

Origimally the array locks like this:
Richard: 85

Sherwood: 82

Toni: 58

Franz 87

Melissa: 75

Roddy 85

After sorting the array by value using arsort(), the array lools like this:
Toni: 98

Richard: 35

Franz 87

Roddy: 85

Sherwood: 82

Melissa: 75

After sorting the array by key using ksort(), the array locks like this:
Franz 87

Melissa: 75

Richard: 55

Roddy 8BS

Sherwood: 82

Toni: 98

Figure 7.8 You can sort an array in a number of ways
with varied results. Pay close attention to whether
you want to maintain your key-value association
when choosing a sort function.

7. Sort the array by key to put the array in
alphabetical order by student name:

ksort ($grades);

The ksort() function organizes the array

by key (in this case, alphabetically) while
maintaining the key-value correlation.

8. Printa caption and the array one last time:

print '<p>After sorting the array
by key using ksort(), the array
looks like this:
';

foreach ($grades as $student =>
$grade) {

print "$student: $grade
\n";

3
print '</p>"';

9. Complete the script with the standard
PHP and HTML tags:

7>
</body>
</html>

10. Save your script as sort.php, place it
in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 7.8).

v Tips

B The $grades array could have been cre-
ated using the grades as the keys and the
names of the students as values. It works
either way.

B Thenatsort() and natcasesort()
functions sort a string (while maintain-
ing key-value associations) using natural
order. The most obvious example of natu-
ral order sorting is that it places name2
before namel2, whereas sort() orders
them namel2 and then name2.

B Theusort(),uasort(),and ursort()
functions let you sort an array using a
user-defined comparison function. These
functions are most often used with multi-
dimensional arrays.

173

SAVIYY ONILIOS

TRANSFORMING BETWEEN STRINGS AND ARRAYS

Chapter 7

Transforming Between
Strings and Arrays

Now that you understand both strings and
arrays, this section introduces two functions for
switching between the two formats. The first,
implode(), turns an array into a string. The
second, explode(), does just the opposite.
Here are some reasons to use these functions:

¢ To turn an array into a string in order to
pass that value appended to a URL (which
you can't do as easily with an array)

¢ To turn an array into a string in order to
store that information in a database

¢ To turn a string into an array to convert
a comma-delimited text field (say a
keyword search area of a form) into its
separate parts

The syntax for using explode() is as follows:
$array = explode($separator, $string);

The separator refers to whatever character(s)
define where one value ends and another
begins. Commonly this is a comma, a tab, or
a blank space. Thus your code might be

$array = explode(',', $string);
or
$array = explode(' ', $string);

) | Must Sort This Qut! - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

(|j |http:,l',l’localhost:SDDD,l’Iist.htmI *ﬁr v|

Enter the words you want alphabetized with each mdiwidual word separated by a space:

|Elrian Sommar Eric Mark Shauna Mike Allison | [Alphabetizel]

Figure 7.9 This HTML form takes a list of words, which is then alphabetized by the
handle_list.php script (Figure 7.10).

174

Using Arrays

©) | Have This Sorted Out - Mozilla Firefox B@
File Edit ‘View History Bookmarks Tools Help

l: |j |http:,l',l’localhost:SDDD,I'handIe_Iist.php '|‘,\j’ '|

An alphabetized version of your list is:
Allison

Brian

Eric

Iulark

Ifike

Shauna

Sotnmar

Figure 7.10 Here’s the same list, alphabetized for
the user. This process is quick and easy to code, but
doing so would be impossible without arrays.

Script 7.6 This is a simple HTML form where a
user can submit a list of words. Including detailed
instructions for how the form should be used is a
prudent Web design policy.
8ece = Seript
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>I Must Sort This Qut!</title>
</head>
<body>
<!-- Script 7.6 - list.html -->
10 <div><p>Enter the words you want
alphabetized with each individual word
separated by a space:</p>

(9]

O 00 N O

11

12 <form action="handle_list.php"
method="post">

13

14 <input type="text" name="words"
size="60" />

15 <input type="submit" name="submit"
value="Alphabetize!" />

16

17 </form>

18 </div>

19 </body>

20 </html>

To go from an array to a string, you need
to define what the separator (aka the glue)
should be, and PHP does the rest:

$string = implode($glue, $array);
$string = implode(',"', $array);

or
$string = implode(' ', $array);

To demonstrate how to use explode() and
implode(), you'll create an HTML form that
takes a space-delimited string of names from
the user (Figure 7.9). The PHP script will then
turn the string into an array so that it can sort
the list. Finally, the code will create and return
the alphabetized string (Figure 7.10).

To create the HTML form:

1. Begin a new document in your text editor
or IDE (Script 7.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>I Must Sort This OQut!
</title>

</head>
<body>
<!-- Script 7.6 - list.html -->

continues on next page

175

SAVYYY ANV SONIYLS NIIMLIg ONIWIO4ASNVYI]

TRANSFORMING BETWEEN STRINGS AND ARRAYS

Chapter 7

2.

Create an HTML form with a text input:
<div><p>Enter the words you want
alphabetized with each individual
word separated by a space:</p>
<form action="handle_list.php"
method="post">
<input type="text" name="words"
size="60" />
It's important in cases like this to instruct
the user. For example, if they enter a
comma-delimited list, you won't be able
to handle the string properly (after com-
pleting both scripts, try using commas in
lieu of spaces and see what happens).

Create a submit button, and then close
the form and the HTML page:

<input type="submit" name="submit"
value="Alphabetize!" />
</form>
</div>
</body>
</html>
Save your script as 1ist.html and place

it in the proper directory for your PHP-
enabled server.

Now you'll write the handle_list.php page
to process the data generated by 1ist.html.

176

Using Arrays

Script 7.7 Because the explode() and implode()
functions are so simple and powerful, you can
quickly and easily sort a submitted list of words (of
practically any length) in just a couple of lines.

CXeXG) 2 script

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
|6 <title>I Have This Sorted Out</title>
|7 </head>
| 8 <body>

|9 <?php // Script 7.7 - handle_list.php

|10 /* This script receives a string in
$_POST['words']. It then turns it into
an array,

11 sorts the array alphabetically, and
reprints it. */

12

13 // Address error management, if you want.

14

16 $words_array = explode(' ' , $_POST
['words']1);

17

18 // Sort the array:

19 sort($words_array);

20

21 // Turn the array back into a string:

22 $string_words = implode('
',
$words_array);

23

24 // Print the results:

25 print "<p>An alphabetized version of your
list is:
$string_words</p>";

26

27 7>

28 </body>
29 </html>

15 // Turn the incoming string into an array:

To convert between strings and arrays:

1. Begin a new document in your text editor

or IDE (Script 7.7):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>I Have This Sorted Out
</title>

</head>
<body>

<?php // Script 7.7 - handle_list.php

. Turn the incoming string, $_POST

['words'], into an array:

$words_array = explode(' ' ,
$_POST['words']);
This line of code creates a new array,
$words_array, out of the string
$_POST['words']. Each space between
the words in $_POST['words '] indicates
that the next word should be a new array
element. Hence the first word becomes
$words_array[@], then there is a space in
$_POST['words '], then the second word
becomes $words_array[1], and so forth,
until the end of $_POST['words'].

. Sort the array alphabetically:

sort($words_array);

Because you don't need to maintain key-
value associations in the $words_array,
you can use sort() instead of asort()
(which you used before).

continues on next page

177

SAVYYY ANV SONIYLS NIIMLIg ONIWIO4ASNVYI]

TRANSFORMING BETWEEN STRINGS AND ARRAYS

Chapter 7

4.

Create a new string out of the sorted array:
$string_words = implode('
',
$words_array);
Arrays don't print as easily as strings, so
you turn $words_array into a string called
$string_words. The resulting string starts
with the value of $words_array[@], fol-
lowed by the HTML
 tag, the value
of $words_array[1], and so on. Using

 instead of a space or comma gives
the list a more readable format when it’s
printed to the browser.

Print the new string to the browser:

print "<p>An alphabetized version
of your list is:

$string_words</p>";

Close the PHP section and the HTML page:
7>

</body>

</html>

Save your page as handle_list.php, place
it in the same directory as 1ist.html, and
test both scripts in your Web browser
(Figures 7.9 and 7.10).

v Tips

The conversion from $words_array back
to $string_words was more of an example
than a requirement. You could also print
out $words_array using a foreach loop.

You'll also run across code written using
the join() function, which is synony-
mous with implode().

178

Using Arrays

DSunDManDTucDWedDThuDFriDSal|

Figure 7.11 Checkboxes in an HTML form (using
Firefox on Mac 0S X).

Creating an Array
from a Form

Throughout this chapter, youve established
arrays entirely from within a PHP page. You
can, however, send an array of data to a PHP
script via an HTML form. In fact, every time
you use $_POST, this is the case. But you can
take this one step further by creating arrays
with an HTML form, which are then a part
of the greater $_POST array (thereby making
$_POST a multidimensional array).

The most logical use of this capability is

in dealing with checkboxes, where users
might need to select multiple related options
(Figure 7.11). The HTML source code for a
checkbox is as follows:

i

<input type="checkbox'
value="some_value" />

name="some_input"

The problem is that in order to send multiple
values to a PHP script, each form element
must have a unique name. If you created
several checkboxes, each with a name of
some_input, only the value of the last checked
box would be received in the PHP script. The
workaround is to use an array.

179

W04 V WOJ4 AVHYIY NV ONILVIY)

CREATING AN ARRAY FROM A FORM

Chapter 7

To create an array with an HTML form:

1. Begin anew document in your text editor
or IDE (Script 7.8):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Add an Event</title>
</head>
<body>
<!-- Script 7.8 - event.html -->

<div><p>Use this form to add an
event:</p>

2. Begin the HTML form:

<form action="handle_event.php"
method="post">

3. Create a text input for an event name:
<p>Event Name: <input type="text"
name="name" size="30" /></p>
This example allows the user to enter
an event name and the days of the week

when it takes place.

Script 7.8 This HTML form has an array for the

checkbox input names.

eece =) Saript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Add an Event</title>
7 </head>
| 8 <body>

|19 <!-- Script 7.8 - event.html -->
10 <div><p>Use this form to add an event:</p>

12 <form action="handle_event.php"
method="post">

13

14 <p>Event Name: <input type="text"
name="name" size="30" /></p>

15 <p>Event Days:

16 <input type="checkbox" name=
"weekdays[]" value="Sunday" /> Sun

17 <input type="checkbox" name=
"weekdays[]" value="Monday" /> Mon

18 <input type="checkbox" name=
"weekdays[]" value="Tuesday" /> Tue

19 <input type="checkbox" name=
"weekdays[]" value="Wednesday" /> Wed

20 <input type="checkbox" name=
"weekdays[]" value="Thursday" /> Thu

21 <input type="checkbox" name=
"weekdays[1" value="Friday" /> Fri

22 <input type="checkbox" name=

"weekdays[]" value="Saturday" /> Sat
23 </p>
24 <input type="submit" name="submit"
value="Add the Event!" />

25

26 </form>
27 </div>
28 </body>
29 </html>

180

Using Arrays

4. Create the weekday checkboxes:

<p>Event Days:

<input type="checkbox" name=
"weekdays[]" value="Sunday" /> Sun

<input type="checkbox" name=
"weekdays[]" value="Monday" /> Mon

<input type="checkbox" name=
"weekdays[]" value="Tuesday" /> Tue

<input type="checkbox" name=
"weekdays[]" value="Wednesday"
/> Wed

<input type="checkbox" name=
"weekdays[]" value="Thursday"

/> Thu

<input type="checkbox" name=
"weekdays[]" value="Friday" /> Fri

<input type="checkbox" name=
"weekdays[]" value="Saturday"

/> Sat

</p>

All of these checkboxes use weekdays/[|

as the name value, which creates a

$_POST['weekdays'] array in the PHP

script. The value attributes differ for each

checkbox, corresponding to the day of

the week.

5. Complete the HTML form:
<input type="submit" name="submit"
value="Add the Event!" />

</form>

6. Complete the HTML page:
</div>
</body>
</html>
7. Saveyour page as event.html and place

it in the proper directory for your PHP-
enabled server.

You also need to write a handle_event.php
page to handle this HTML form.

181

W04 V WOJ4 AVHYIY NV ONILVIY)

CREATING AN ARRAY FROM A FORM

Chapter 7

To handle the HTML form:

1.

Begin a new document in your text editor
or IDE (Script 7.9):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Add an Event</title>
</head>
<body>

Create the initial PHP tag, address error

management (if need be), and print an

introductory message

<?php // Script 7.9 - handle_
event.php

print "<p>You want to add an event
called {$_POST['name']}
which takes place on:
";

The print() line prints out the value of
the event’s name. In a real-world version
of this script, you would add a conditional
to check that a value was entered (see
Chapter 6, “Control Structures”).

Script 7.9 This PHP script receives an array of values
in $_POST['weekdays"'].

ece =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
: 1.0 Transitional//EN"
:2 "http://www.w3.0rg/TR/xhtml1/DTD/
| xhtmll-transitional.dtd">
:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">
:4 <head>
:5 <meta http-equiv="Content-Type"
| content="text/html; charset=utf-8"/>
:6 <title>Add an Event</title>
|7 </head>
:8 <body>
|19 <?php // Script 7.9 - handle_event.php
:10 /* This script creates, sorts, and prints
out an array. */

11

12 // Address error management, if you want.

13

14 // Print an introductory text:

15 print "<p>You want to add an event called
{$_POST["'name']} which takes place
on:
";

16

17 // Print each weekday:

18 if (isset($_POST['weekdays']) AND
is_array($_POST['weekdays'])) {

19

20 foreach ($_POST['weekdays'] as $day) {

21 print "$day
\n";

22 }

23

24 1} else {

25 print 'Please select at least once

weekday for this event!';

26 }

27

28 // Complete the paragraph:

29 print '</p>';

30 7>

31 </body>

32 </html>

182

Using Arrays

3. Begin a conditional to check that at least

one weekday was selected:

if (isset($_POST['weekdays']) AND
is_array($_POST['weekdays'])) {
If no checkbox was clicked, then
$_POST['weekdays '] won't be an exist-
ing variable. To avoid an error caused by
referring to a variable that does not exist,
the first part of the conditional checks
that $_POST['weekdays'] is set.
The second part of the condition—
and both must be TRUE for the entire
condition to be TRUE—confirms that
§_POST['weekdays'] is an array. Thisis a
good step to take because a foreach loop
will create an error if it receives a variable
that isn't an array.

. Print each selected weekday:
foreach ($_POST['weekdays'] as

$day) {
print "$day
\n";

}

To print out each checked weekday,
yourun the $_POST['weekdays'] array
through a foreach loop. The array con-
tains the values (from the HTML form
inputs, for example, Monday, Tuesday,
and so on) for every box that was selected.

. Complete the is_array() conditional:
} else {
print 'Please select at least once
weekday for this event!';
3

If no weekday was selected, then the
isset() AND is_array() condition is
FALSE, and this message is printed.

continues on next page

183

W04 V WOJ4 AVHYIY NV ONILVIY)

CREATING AN ARRAY FROM A FORM

Chapter 7

6. Complete the main paragraph, the PHP
section, and the HTML page:
print '</p>"';
7>
</body>
</html>

7. Save the page as handle_event.php, place
it in the same directory as event.html,
and test both pages in your Web browser
(Figures 7.12 and 7.13).

v Tip

B The same technique demonstrated
here can be used to allow a user to
select multiple options in a drop-down
menu. Just give the menu a name with
a syntax like something[], then the
PHP script will receive every selection
in $_POST['something'].

3 Add|an Event - Mozilla Firefox B

Fle Edt View History Bookmarks Took Help

(L1 [hetpeiscabost:soonjever il 77 -]

Use this form to add an event:

Eswent IMame: |Traimimg Seminar ‘

Event Days: [Sun [Mon [Tue Wed B Thu O Fri O Sat

Add the: Eventl

Figure 7.12 The HTML form with its checkboxes
(using Firefox on Windows XP).

) Add an Event - Mozilla Firefox
Fle Edit Yiew Hstory Bookmarks Todls Help

() | netpefilocalhost:000/handis_event. phe 7 -]

You want to add an event called Iraining Seminar which talees place on:
Tuesday

Wednesday

Thursday

Figure 7.13 The results of the HTML form.

The List Function

The 1ist() function is used to assign array element values to individual variables. To start with

an example:

$date = array('Thursday', 23, 'October');

list($weekday, $day, $month) = $date;

Now there is a $weekday variable with a value of 7hursday, a $day variable with a value of 23,

and a $month variable with a value of October.

There are two caveats for using 1ist(). First, 1ist() only works on arrays numerically indexed
starting at 0. Second, when you're using the 1ist() function, you must acknowledge each array
element. But you can use empty values to ignore elements:

list ($weekday, , $month) = $date;
or

list ¢, , $month) = $date;

But you cannot do this:

list ($month) = $date;

The 1ist() function is often used when retrieving values from a database.

184

CREATING WEB
APPLICATIONS

The chapters to this point cover the funda-
mentals of programming with PHP; now it’s
time to begin tying it all together into actual
Web applications. In this chapter, you'll learn
about a number of functions and techniques
that you can utilize to make your Web sites
more professional, more feature-rich, and
easier to maintain.

First, you'll begin learning how to use exter-
nal files to break your Web pages into indi-
vidual pieces (allowing you to separate the
logic from the formatting, to a degree). Then
you'll tinker with constants, a special data
type in PHP. After that, you'll be introduced to
some of the date- and time-related functions
built into PHP.

Two of the chapter’s topics discuss useful
techniques: having the same page both dis-
play and handle an HTML form, and having a
form remember user-submitted values. After
that, you'll see how easy it can be to send
email from PHP. The chapter concludes with
the slightly more advanced topics of output
buffering and using HTTP headers.

185

SNOILVYDI1ddY 93\ ONILVIY)

CREATING TEMPLATES

Chapter 8

Creating Templates

Every example thus far has been a one-page
script that handles an HTML form, sorts
arrays, or performs calculations. However, as
you begin to develop multiple-page Web sites
(which is to say Web applications), it quickly
becomes impractical to repeat common ele-
ments over the course of several pages.

Certain features, such as the HTML design,
will be used by every page within the site. You
can put these elements into each individual
page, but when you need to make a change,
you'll be required to make that change over
and over again. You can save time by creating
templates that separate out the repeating
content from the page-specific materials. For
example, a Web site may have navigation,
copyright, and other features that repeat
across multiple pages (Figures 8.1 and 8.2).

The key to using templates is to create a pro-
totype and then divide it into parts. Using the
PHP functions introduced in the next section
of this chapter, the repeating parts can be easily
included in each page while the new content
is generated on a page-by-page basis. You'll
first learn how to develop the template files.

To create the layout model:

1. Begin anew HTML document in your
text editor or IDE (Script 8.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Elliott Smith Fan Club
</title>

_Agecializiog In digital media teshngiogies

About PHP Programming for the World Wide Web: Visual QuickStart
Guide (3rd Edition)

Figure 8.1 The book’s home page has its page-
specific content in the middle column.

Figure 8.2 The book’s table of contents page uses the
same left and right columns as the home page (Figure
8.1), thanks to the templates.

186

Creating Web Applications

Script 8.1 This script represents the desired end
result with the template system.

8e6e6 =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"
|2 "http://waw.w3.org/TR/xhtml1/DTD/
| xhtmll-transitional.dtd">
:3 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">
|4 <head>
:5 <meta http-equiv="Content-Type"
| content="text/html; charset=utf-8"/>
|6 <titlesElliott Smith Fan Club</titles
|7
:8 <style type="text/css">
:9 body {
| 10 margin:@px @Opx Qpx Opx;

11 background: #9F9;

12 }

13 #leftcontent {

14 float:left;

15 width:67%;

16 background:#fff;

17 border-right:2px solid #000;
18 border-bottom:2px solid #000;
19 margin-right:15px;

20 padding-bottom:20px;

21 }

22 p,hl,pre {

23 margin:@px 30px 1@px 30px;
24 }

25 hl {

26 font-size:14px;

27 padding-top:10px;

28 }

29 #rightcontent p {

30 font-size:14px;

31 margin-left:0px;

32 }

33 </style>

34

35 </head>

36 <body>

37 <div id="leftcontent">

38 <!-- BEGIN CHANGEABLE CONTENT. -->

39

(script continues on next page)

The first step in developing any template
system is to create a model document—
an example of what a basic page should
look like. Once you've created this, you
can break it down into its parts.

2. Add the CSS code:
<style type="text/css">

body {
margin:@px @px Opx Opx;
background: #9F9;

}

#leftcontent {
float:left;
width:67%;
background:#fff;
border-right:2px solid #000,
border-bottom:2px solid #000;
margin-right:15px;
padding-bottom:20px;

3

p,hl,pre {
margin:@px 30px 10px 30px;
3

hl {
font-size:14px;
padding-top:10px;

}

#rightcontent p {
font-size:14px;
margin-left:0px;

}
</style>

This example uses CSS for most of the for-
matting and layout controls. The sidebar
talks a little bit about this example: how it
works and where it came from.

continues on next page

187

S31VI1dW3] SNILVIY)

CREATING TEMPLATES

Chapter 8

3.

Close the HTML head, begin the body,
and mark the start of the changeable
content:

</head>

<body>

<div id="leftcontent">

<!-- BEGIN CHANGEABLE CONTENT. -->
Everything up until this point will remain
the same for every page in the Web appli-
cation. To indicate this (for your own
benefit), include an HTML comment.
Just before that, the leficontent area is
begun. This area is defined in the CSS
code and properly formats the main
content part of the page. In other words,
on every page, that page’s content will

go within the one div that has an id of
leftcontent.

Create the pages content:

<hl>Welcome to the Elliott Smith Fan
Club!</h1>

<p>Here's a whole lotta text.</p>

<p>Here's a whole lotta text.</p>

For the example, the content is just a

header and a whole lot of text (there’s

more in the actual script than I've

included in this step).

Mark the end of the changeable content:
<!-- END CHANGEABLE CONTENT. -->

The code in Step 4 is the only text that will
change on a page-by-page basis. Just as

an HTML comment indicates where that
section starts, one here indicates where

it ends.

Script 8.1 continued

ece =| Seript

| 40 <hl>Welcome to the Elliott Smith Fan

: Club!</h1>

:41 <p>Here's a whole lotta text. Here's

: a whole lotta text. Here's a whole

| lotta text. Here's a whole lotta text.

: Here's a whole lotta text. Here's

: a whole lotta text. Here's a whole

: lotta text. Here's a whole lotta text.

| Here's a whole lotta text. Here's a

: whole lotta text. </p>

:42 <p>Here's a whole lotta text. Here's

: a whole lotta text. Here's a whole

| lotta text. Here's a whole lotta text.

: Here's a whole lotta text. Here's
a whole lotta text. Here's a whole
lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a
whole lotta text. </p>

43

44 <!-- END CHANGEABLE CONTENT. -->

45 </div>

46

47 <div id="rightcontent">

48 <h1>Navigation</h1l>

49 <p>Home

50 Discography

51 Login

52 Register
</p>

53 </div>

54

55 </body>

56 </html>

188

Creating Web Applications

6. Create the navigation area:
</div>
<div id="rightcontent">
<h1>Navigation</h1l>
<p>Home

Discography

Login

Register
</p>
</div>
The rightcontent area (also defined in the
CSS code) contains links to the other
pages in the Web application. This is
preceded by the closing </div> tag, which
completes the leftcontent section.

7. Finish the HTML page:
</body>
</html>

8. Save the file as layout.html and test it in
your Web browser (Figure 8.3).

Once you've completed a model that you
like, you can break it into its various parts to
generate the template system.

e0o Elliott Smith Fan Club =
‘Welcome to the Elliott Smith Fan Club! Navigation
Here's a whole lotta text. Here's a whole lotta text. Home
Here's a whole lotta text. Here's a whole lotta text. ?‘_‘;_Sgcigﬂp_hx
Here's a whole lotta text. Here's a whole lotta text. Register

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Figure 8.3 Although this design isn’t very fancy, it provides a model to work toward
with the PHP templates.

189

S31VI1dW3] SNILVIY)

CREATING TEMPLATES

Chapter 8

To create the header file:

1. Open layout.html (Script 8.1) in your
text editor or IDE, if it isn't already open.

2. Select everything from the initial
HTML code to the <! -- BEGIN
CHANGEABLE CONTENT --> HTML
comment (Figure 8.4).

Part of the benefit of identifying the
start of the page-specific content with
an HTML comment is that it simplifies
breaking the model into its parts.

<hl*Helcome to the Elliott Smith Fan Club!</hl> 4

Figure 8.4 Using the example file, select and copy the initial lines of code
to create the header.

190

Creating Web Applications

Script 8.2 This is a basic header file that creates
the HTML head information (including the CSS) and

begins the body.

ece = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"

content="text/html; charset=utf-8"/>

6 <title>Elliott Smith Fan Club</title>

7

8 <style type="text/css">

9 body {

10 margin:@px @px Opx Opx;

11 background: #9F9;

12 }

13 #leftcontent {

14 float:left;

15 width:67%;

16 background:#fff;

17 border-right:2px solid #000;

18 border-bottom:2px solid #000;

19 margin-right:15px;

20 padding-bottom:20px;

21 }

22 p,hl,pre {

23 margin:@px 30px 10px 30px;

24 }

25 hl {

26 font-size:14px;

27 padding-top:10px;

28 }

29 #rightcontent p {

30 font-size:14px;

31 margin-left:0Qpx;

32 }

33 </style>

34

35 </head>

36 <body>

37 <div id="leftcontent">

38 <!-- Script 8.2 - header.html -->

39 <!-- BEGIN CHANGEABLE CONTENT. -->

3. Copy this code.
Using your Edit menu or keyboard short-
cut (Ctrl+C on Windows, Command+C on
the Macintosh), copy all of the highlighted
code to your computer’s temporary
memory (which is to say, the clipboard).

4. Create a new, blank document in your
text editor or IDE.

5. Paste the copied text into the document
(Script 8.2).
Using your Edit menu or keyboard short-
cut (Ctrl+V on Windows, Command+V on
the Macintosh), paste all of the high-
lighted code into this new document.

6. Save the file as header.html.

Now that the header file has been created,
you'll make the footer file using the same
process.

191

S31VI1dW3] SNILVIY)

CREATING TEMPLATES

Chapter 8

To create the footer file:

1. Open layout.html (Script 8.1) in your
text editor or IDE, if it isn't already open.

2. Select everything from the <!-- END
CHANGEABLE CONTENT --> HTML com-
ment to the end of the script (Figure 8.5).

3. Copy this code.

4. Create a new, blank document in your
text editor.

5. Paste the copied text into the document
(Script 8.3).

6. Save the file as footer.html.

Script 8.3 This is a basic footer file that creates the
navigation column and concludes the HTML page.

0086 = saript

11 <!-- END CHANGEABLE CONTENT. -->
|

|2 <!-- Script 8.3 - footer.html -->
[3 <divs

|5 «div id="rightcontent">

|6 <h1>Navigation</h1l>

:7 <p>Home

:8 Discography

|

:9 Login

:10 Register
: </p>

:11 </div>

12

13 </body>

14 </html>

00

<[= [[script_oB_0l.html % | (nosymb
—— p = = Y

o _ﬂ TH ﬁ @- Last Saved: 10/23/08 5:33:25 Ph
- texr| File Path: ~/Documents Mfriting/PHP. .8 fcodefscript_08_01. himl

ol selected) % | R AR

5@.. whole lotta text. Here's o whol
text. Here's a whole lottao text

whaole lotto text. </p>
51 <!-- EHD CHAMGERELE CONTEHWT. -->

68 = <fdjvy
&1

62 = </bady:
63 = </html>

51 [1 HTML % Unicode™ (UTF-8, no BOM) &

Here's a whole lotto text. Here's o whole lotto text. Here's a

52 o fdiv>

53

54 ¥ <div id="rightcontent®>

55 <hl*Navigat ion</hl>

s6 W <p2*Home</az

57 < href="albums.php"*Discographys/a>

58 Login</ar

59 = Register</p>

e lotto text. Here's a whole lotta =
. Here's a whole lotto text.

s

Unix (LF1 %

Figure 8.5 Again using the example file, select and copy the concluding lines of code

for the footer.

192

Creating Web Applications

eno Table Example = “ Tips
T0p decorative row. B There are many far more complex
Header file ends here. template systems you can use in PHP to
. . separate the design from the logic. The
Navigation Page-specific content goes Blank .
column. here. space. best known of these is probably Smarty

(www.smarty.net).
Footer file starts here.

Copyright row. B Although this example used CSS for
its layout, you can certainly use tables
Figure 8.6 This mundane example shows how a table instead (Figure 8.6). Your header file
is used with template files to create a design. might begin the HTML page and the

table. Each content page would then
create its own specific content, and the
footer file would complete the table

and the HTML page. To turn this into a
template, copy all of the code up to Page-
specific content goes here. into a header file
and everything after that into a footer file.

This CSS Template

Cascading Style Sheets (CSS) have been an increasingly important part of the World Wide Web
for some time. Their initial usage was focused on cosmetics (font sizes, colors, and so on), but
now CSS are frequently used in lieu of tables to control the layout of pages. The Web applica-
tion in this chapter uses this approach.

This example defines two areas of the page—/eficontent and rightcontent. The leftcontent area
changes for each page. The rightcontent contains standard items, such as navigation links, that
appear on each page of the application. The example used in this chapter is based on one of the
many CSS examples displayed at glish.com (http://glish.com/css). This specific example, in
turn, comes from the excellent site A List Apart (www.alistapart.com).

Just to be clear: There is no relationship between PHP and CSS other than the fact that you can
use PHP to generate CSS, just as you can use PHP to generate HTML. In this example, though,
the CSS is hard-coded into the head section of the HTML document.

193

S31VI1dW3] SNILVIY)

www.smarty.net
www.alistapart.com
http://glish.com/css

USING EXTERNAL FILES

Chapter 8

Using External Files

As the preceding section said, you can save
development time by creating separate
pages for particular elements and then
incorporating them into the main PHP pages
using specific functions. These functions are
include() and require():

include ('file.php');
require ('file.html");

Both functions work the same way, with

one relatively insignificant difference: If the
include() function fails, the PHP script gen-
erates a warning (Figure 8.7) but continues
to run. Conversely, if require() fails, it termi-
nates the execution of the script (Figure 8.8).

But what do these two functions do? Both
include() and require() incorporate the
file referenced into the main file (for clar-
ity’s sake, this chapter refers to the file that
has the include() or require() line as the
including or parent file). Any code within the
included file is treated as HTML unless it's
within the PHP tags in the included file itself.
This way, included files behave exactly as if
you were running them in the Web browser.

There are many reasons to use included files.
You could put your own defined functions
into a common file (see Chapter 10, “Creating
Functions;” for information on writing your
own functions). You might also want to place
your database access information into a con-
figuration file (see Chapter 12, “Introduction
to Databases”). First, however, let’s include
the template files created in the preceding
section of the chapter in order to make pages
abide by a consistent design.

800 Mozilla Firefox =]

‘Warning: include(templates/header.html) [function.include]: failed to open
stream: No such file or directory in /Users/larryullman/Sites
/seript_08_04.php on line 6

‘Warning: include() [function.include]: Failed opening
‘templates/header.html’ for inclusion (include_path="") in /Users
Aarryullman/Sites/script_08_04.php on line 6

Welcome to the Elliott Smith Fan
Club!

Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text.
Here's a whole lotta text.

‘Warning: include(templates/footer.html) [function.include]: failed to open
stream: No such file or directory in /Users/larryullman/Sites
/seript_08_04.php on line 15

‘Warning: include() [function.include]: Failed opening
'templates/footer.html' for inclusion (include_path='"") in /Users
Aarryullman/Sites/script_08_04.php on line 15

Figure 8.7 When an include() fails, warnings are
issued, but the script continues to execute.

a0 Mozilla Firefox (=)

‘Warning: require(templates/header.html) [function require]:
failed to open stream: No such file or directory in /Users
Marryullman/Sites/script_08_04.php on line 6

Fatal error: require() [function.require]: Failed opening
required 'templates/header.html’ (include_path="") in /Users

Narryullman/Sites/script_08_04.php on line 6

Figure 8.8 When a require() function call fails,
warnings and errors are issued, and the script
stops running.

194

Creating Web Applications

To use external files:

1. Create a new document in your text
editor or IDE.

2. Start with the initial PHP tags and add
any comments (Script 8.4):
<?php // Script 8.4 - index.php
/* This is the home page for this
site.

It uses templates to create the
layout. */

Notice that, with the template system, the

very first line of the script is the PHP tag.

There’s no need to begin with the initial

HTML stuff, because it’s now stored in the

header.html file.

3. Address error management, if necessary.

This topic is discussed in Chapter 3, “"HTML
Forms and PHP” and may or may not need
to be addressed in your scripts. See that
chapter for more; this will be the last time
I specifically mention it in this chapter.

continues on next page

Script 8.4 Once the two included files have been created, the require() function incorporates them into the parent
file to create the entire page on the fly.

ece =) Script

1 <?php // Script 8.4 - index.php

2 /* This is the home page for this site.

3 It uses templates to create the layout. */

4

5 // Include the header:

6 require('templates/header.html’);

7 // Leave the PHP section to display lots of HTML:

8 7>

9

10 <hl>Welcome to the Elliott Smith Fan Club!</h1>

11 <p>Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a
whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta
text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. </p>

12 <p>Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a
whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta
text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. </p>

13

14 <?php // Return to PHP.

15 require('templates/footer.html'); // Include the footer.

16 7>

195

S3114 TYN¥3LXJ ONIS

USING EXTERNAL FILES

Chapter 8

4.

7.

Include the header file:
require('templates/header.html');

To use the template system, you include
the header file here by invoking the
require() function. Because the header
file contains only HTML, all of its con-
tents will be immediately sent to the
Web browser as if they were part of this
file. This line uses a relative path to refer
to the included file (see the sidebar) and
assumes that the file is stored in the
templates directory.

Close the PHP section and create the

page-specific content:

7>

<hl>Welcome to the Elliott Smith Fan
Club!</h1>

<p>Here's a whole lotta text.</p>

<p>Here's a whole lotta text.</p>

Because the bulk of this page is standard

HTML, you exit out of the PHP section

and then type the HTML (rather than

using print() to send it to the Web

browser). Again, there’s more blather in

the actual script than I've included here.

Create another PHP section and require
the footer file:

<?php
require('templates/footer.html');
7>

To finish the page, you need to include
the footer file (which displays the
navigation and closes the HTML code).
To do this, you create a new section of
PHP—you can have multiple sections of
PHP code within a script—and call the
require() function again.

Save the file as index. php.

196

Creating Web Applications

£

e index.php

templates

"= e header.html

] e
[e footer.html

8.

Figure 8.9 How the three files should be organized on
your PHP-enabled server.

10

11.

Create a folder called templates within
the main Web document directory on
your PHP-enabled computer or Web
server.

To further separate the design elements
from the main content, the header and
footer files go within their own directory.

Place header.html and footer.html in
the templates directory you just created.

Place index.php in the same directory as
the templates folder (Figure 8.9).

The relative locations on the computer
between the index page and the two
HTML pages must be correct in order
for the code to work.

Run index. php in your Web browser
(Figure 8.10).

The resulting page should look exactly like
the original layout (Figure 8.3).

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

12. View the page's source code in your Web
browser.
The source code should be exactly like
the source code of the layout . html
script (Script 8.1), aside from the added
comments for the script names and
numbers.
00 Elliott Smith Fan Club =

‘Welcome to the Elliott Smith Fan Club! Navigation

Here's a whole lotta text. Here's a whole lotta text. Home

Here's a whole lotta text, Here's a whole lotta text. P_;ﬁm

Here's a whole lotta text. Here's a whole lotta text. Register

Figure 8.10 This page has been dynamically generated using included files.

197

S3114 TYN¥3LXJ ONIS

USING EXTERNAL FILES

Chapter 8

v Tips

W All three files in this template system—
header.html, footer.html, and index.
php—must use the same encoding in order
to avoid problems (see Chapter 1, “Getting
Started with PHP” for more on encoding).
Each file’s encoding must also match the
encoding established in the HTML code.

B Therequire() and include() functions
can be used with or without parentheses:

require 'filename.html';

You might also use a variable that stores
the name of the file to be included:

require $filename;

File Navigation and Site Structure

To be able to use external files, you need to understand file navigation on your computer

or server. Just as youd refer to other pages in HTML links or images in Web sites, you must
properly point your parent file to the included scripts. You can do this using absolute or relative
paths. An absolute path is a specific address, like the following:

require('C:\inetpub\wwwfiles\file.php');
require('/Users/larry/Sites/file.php');

As long as the included file isn't moved, an absolute path will always work.

A relative path indicates where the included file is in relation to the parent file. These examples
assume both are within the same directory:

require('file.php');

require('./file.php');

The included file can also be in a directory below the parent one, as in this chapter’s example
(also see Figure 8.9):

require('templates/header.html"');

Or, the included file could be in the directory above the parent:

require('../file.php');

Finally, a note on site structure: Once you divvy your Web application into multiple pieces, you
should begin thinking about arranging the files in appropriate folders. Complex sites might
have the main folder, another for images, one for administration files, and a special directory
for templates and included files. As long as you properly reference the files in your include()
or require() statements, structuring your applications will work fine and give the added ben-
efit of making them easier to maintain.

198

Creating Web Applications

B Both include() and require()
have variations: include_once() and
require_once().Each isidentical to its
counterpart except that it allows the
same file to be included only one time
(in a parent script).

W Ifyou see error messages like those in
Figures 8.7 and 8.8, the parent script can't
locate an included file. This problem
is most likely caused by a misspelled
included filename or an error in the path
(for example, using header . html instead
of templates/header.html).

B A files extension is less important
for included files because they aren’t
intended to be run directly. As a general
rule of thumb, you'll be safe using . html
for an included file containing only or
mostly HTML (in which case the exten-
sion indicates it's an HTML-related file)
and . php for included files containing
only or mostly PHP. Some programmers
use an .1inc extension (for include), but
security risks can be associated with this
practice. For that reason, use the . php
extension for any file containing sensitive
information (like database access param-
eters). And, of course, always use the .php
extension for any PHP script that will be
executed directly.

B Another good use of an external file is to
place your error settings code there so
that the settings changes are applied to
every page in the Web site.

199

S3114 TYN¥3LXJ ONIS

UsING CONSTANTS

Chapter 8

Using Constants

Many of PHP’s data types have already been
discussed in this book: primarily numbers,
strings, and arrays. Constants are another
data type, but unlike variables, they retain
their initial value throughout the course of
a script. You can't change the value of a con-
stant once it has been set!

You can only create a constant by assigning it
a value. Unlike variables, which are assigned
values via the assignment operator (=), con-
stants are assigned values using the define()
function:

define("CONSTANT_NAME', value);

Notice that—as a rule of thumb—constants
are named using all capital letters, although
this isn't required. Most important, constants
don't use the initial dollar sign as variables do
(because constants are not variables). Here
are two constants:

define ('PI', 3.14);
define ('CURRENCY', 'euros');

Referring to constants is generally straight-
forward:

print CURRENCY;
number_format(PI, 1);

But using constants within quotation marks
is more complicated. You can't print con-
stants within single or double quotation
marks, like this:

print "468 CURRENCY";
print '468 CURRENCY';

In both cases, the literal text 468 CURRENCY
will be sent to the Web browser. Instead, con-
catenation or multiple print() statements
are used:

print '468 ' . CURRENCY;
or

print '468 ';
print CURRENCY;

200

Creating Web Applications

Script 8.5 This script uses the same template system
as index.php (Script 8.4) but also uses a constant to
identify the page’s title.

8ee =] Seript

1 <?php // Script 8.5 - albums.php
2 /* This page lists Elliott Smith's
discography. */

4 // Set the page title and include the
header file:

5 define ('TITLE', 'Records by Elliott
Smith');
require('templates/header.html');

8 // Leave the PHP section to display lots

of HTML:

9 7>

10

11 <hl>Elliott Smith's Albums</hl>

12 <p>

13 Roman Candle</1li>

14 Elliott Smith</1i>

15 Either/0r</1i>

16 X0</11i>

17 Figure 8</1i>

18 From a Basement On the Hill</1li>

19 New Moon</11i>

20 </p>

21

22 <?php // Return to PHP and include the
footer:

23 require('templates/footer.html');
24 7>

Not to confuse you, but along with the
define() function for making constants is
the defined() function, which returns TRUE
if the submitted constant has been defined:

defined(' CONSTANT_NAME'); // TRUE
defined('00PS'); //FALSE

As an example of working with constants,
you'll give the example application the ability
to display a different title (which appears at
the top of the browser window) for each page.
To accomplish this, you'll define a constant in
the parent script that will then be printed by
the header file. This technique works because
any variables or constants that exist in the
parent document before the include() or
require() call are available to the included
file (it’s as if the included file were part of the
parent file).

To use constants:

1. Create anew PHP document in your text
editor or IDE, beginning with the initial
PHP tag (Script 8.5):

<?php // Script 8.5 - albums.php

2. Define the page title as a constant:
define ('TITLE', 'Records by Elliott
Smith');
Here one constant is defined, named
TITLE, and given the value Records by
Elliott Smith.

continues on next page

201

SLINVLSNO) 9NIS)

UsING CONSTANTS

Chapter 8

3.

6.

Include the header file:
require('templates/header.html');

This script uses the same header file as all
the others, although you'll modify that file
shortly to take the constant into account.

Close the PHP section and create the
HTML:

7>
<hl>Elliott Smith's Albums</h1>
<p>
Roman Candle</1i>
Elliott Smith</1i>
Either/0Or</1i>
X0</1i>
Figure 8</1i>

From a Basement On the Hill
</1i>

New Moon</1i>
</p>
The content here is simple but serves the
page’s purpose nicely.
Create a new PHP section that includes
the footer file:
<?php
require('templates/footer.html');

7>

Save the file as albums. php.

To take advantage of the constant, you now
need to modify the header . html file.

202

Creating Web Applications

Script 8.6 The header . html file is modified so that it
can set the page title value based on the existence
and value of a constant.

To print out a constant:

1. Open header.html (Script 8.2) in your

8ece = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/

| xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

| 4 <head>

:5 <meta http-equiv="Content-Type"

| content="text/html; charset=utf-8"/>
|6 <title><?php // Print the page title.
|7 if (defined('TITLE')) { // Is the

| title defined?

| 8 print TITLE;

:9 } else { // The title is not defined.
:10 print 'Elliott Smith Fan Club';
|11 }

12 ></title>

13

14 <style type="text/css">

15 body {

16 margin:@px @px @px Opx;

17 background: #9F9;

18 }

19 #leftcontent {

20 float:left;

21 width:67%;

22 background: #fff;

23 border-right:2px solid #000;
24 border-bottom:2px solid #000;
25 margin-right:15px;

26 padding-bottom:20px;

27 }

28 p,hl,pre {

29 margin:@px 30px 1@px 30px;
30 }

31 hl {

32 font-size:14px;

33 padding-top:10px;

34 }

35 #rightcontent p {

36 font-size:14px;

37 margin-left:0Qpx;

38 }

39 </style>

40

41 </head>

42 <body>

43 <div id="leftcontent">

44 <!-- Script 8.6 - header.html -->

45 <!-- BEGIN CHANGEABLE CONTENT. -->

text editor or IDE.

. Delete the Elliott Smith Fan Club text that

appears between the title tags (line 6).
Now that the page title will be determined
on a page-by-page basis, you don’t need it
to be hard-coded into the page.

. Inthe place of the deleted text (between the

title tags), add the following (Script 8.6):
<?php
if (defined('TITLE")) {

print TITLE;
1 else {

print 'Elliott Smith Fan Club';
}
7>
To have PHP create the page title, you
need to begin by starting a section of PHP
code between the title tags. Then you use
a conditional to see if the TITLE constant
has been defined. If it has, you print its
value as the page title. If TITLE hasn't been
defined, you print a default title.

. Save the file as header . html.

5. Upload albums.php and header.html to

your PHP-enabled server. The new PHP
script, albums . php, should go in the same
directory as index.php; header.html
should replace the previous version, in
the same directory—templates—as
footer.html.

continues on next page

203

SLINVLSNO) 9NIS)

UsING CONSTANTS

Chapter 8

6. Run albums.php in your Web browser ®00 Records by Elliott Smith =]
(Figure 8.11). Elliott Smith's Albums Navigation
7. View index.php (the home page) in your + Roman Candle e
Web browser (Figure 8.12). + Elliott Smith Login
« Either/Or Register
8. Ifyou want, add the constant definition *+ X0
« Figure 8

line to index.php to change its title.
v Tips

B The formal rules for naming constants

+ From a Basement On the Hill
+« New Moon

are exactly like those for variables except
for the omission of a dollar sign. Constant
names must begin with a letter; can con-
tain any combination of letters, numbers,
and the underscore; and are case-sensitive.

Figure 8.11 The albums page uses a PHP constant to
create its title.

B PHP runs with several predefined con-
stants. These include PHP_VERSION
(the version of PHP running) and PHP_0S
(the operating system of the server).

B In Chapter 9, “Cookies and Sessions,”
you'll learn about another constant, SID
(which stands for session ID).

B An added benefit of using constants is
that they're global in scope. This concept
will mean more to you after you read the
section “Understanding Variable Scope”
of Chapter 10.

B Not only can the value of a constant never
be changed, a constant can't be deleted.
Also, unlike arrays, a constant can only
ever contain a single value, like a string or

anumber.
en0o Elliott Smith Fan Club =
‘Welcome to the Elliott Smith Fan Club! Navigation
Here's a whole lotta text. Here's a whole lotta text. Home
Here's a whole lotta text. Here's a whole lotta text, E_Aﬁgﬂm
Here's a whole lotta text. Here's a whole lotta text. Register

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Figure 8.12 Because the
index page didn’t have a
TITLE constant defined in it,
the default page title is used
(thanks to the conditional in
Script 8.6).

204

Creating Web Applications

Table 8.1

Date() Function Formatting

CHARACTER

Y

1 (lowercase L)
D

-

c > 9 < wn

e
| (capital i)
0

MEANING

Year as 4 digits

Year as 2 digits
Isitaleap year?
Month as 1 or 2 digits
Month as 2 digits
Month

Month as 3 letters

Day of the month as
1 or 2 digits

Day of the month
as 2 digits

Day of the week

Day of the week as
3 letters

Day of the week as
asingle digit

Day of the year:
0to 365

Number of days in
the month

English ordinal
suffix for a day,
as 2 characters

Hour; 12-hour format
as 1 or 2 digits

Hour; 24-hour format
as 1 or 2 digits

Hour; 12-hour format
as 2 digits

Hour; 24-hour format
as 2 digits

Minutes
Seconds
Microseconds
amor pm

AM or PM

Seconds since
the epoch

Timezone
Is it daylight savings?
Difference from GMT

EXAMPLE
2004

04

1 (for yes)
2

02
February
Feb

8

08

Monday
Mon

0 (Sunday)
189
31

rd

18
06
18

45

18

1234

am

PM
1048623008

uTC
1 (for yes)
+0600

Working with the Date
and Time

PHP has a few functions for working with the
date and time, the most important of which
is date(). The only thing the date() function
does is return date and time information in

a format based on the arguments it’s fed, but
youd be surprised how useful that can be!
The basic usage of the date() function is just

date(' formatting');

Along list of possible options is available for
formatting, as indicated in Table 8.1. These
parameters can also be combined—for exam-
ple,date(l F j, Y returns Friday January
26, 2004.

The date() function can take another argu-
ment called a timestamp. A timestamp is a
number representing how many seconds
have passed since midnight on January 1,
1970—a moment referred to as the epoch. The
time() function returns the timestamp for
the current moment. The mktime() function
can return a timestamp for a particular time
and date:

mktimeChour, minute, second, month, day,
year);,

So the code
$ts = mktime(12, 30, 0, 11, 5, 2009);

assigns to $timestamp the number of seconds
from the epoch to 12:30 on November 5, 2009.
That number can then be fed into the date()
function like so:

date('D", $ts);

This returns 7Au, which is the three-letter
format for that day of the week.

As of PHP 5.1, you should establish the
server’s time zone prior to calling any
date- or time-related function. To do so, use:

date_default_timezone_set(timezone);

205

dWI] ANV 31V FHL HLIM SNDRIOM

WORKING WITH THE DATE AND TIME

Chapter 8

The timezone value is a string like America/ Script 8.7 The modified footer.html file uses the
New_York or Pacific/Auckland. There are too date() function to print the current date and time.
many to list here (Africa alone has over 50), 0006 2 Script
but see the PHP manual for them all. If you |1 <!-- END CHANGEABLE CONTENT. -->
| .
don't take this step, you might see errors |2 <!-- Script 8.7 - footer.html -->
(Figure 8.13). 3 «div
|
4
To demonstrate the date() function, let’s s <div ide rightcontent”
update the footer file so that it shows the 6 <h1>Navigation</hl>
current date and time. |7 <p>Home

: 8 Discography
To use date(): | e
1. Open footer.html (Script 8.3) in your 9 Login

text editor or IDE. |10 Register</p>
|
. . | 1
2. Before the Closmg </div>tag, add the : 12 <p><?php // Print the current date
following (Script 8.7): | and time:
<p><?php 13 // Set the timezone:
The initial HTML tags format the date 14 date_default_timezone_set('America/
and time slightly, putting them in italics New_York®);
(thanks to the emphasis tag). Then you 15 . .
. 16 // Now print the date and time:
open a PHP section so that you can call . .)
the date() fi . 17 print date('g:ialF j');
€ datel) unction. 18 7></p>
3. Establish the time zone: 19
date_default_timezone_set('America/ 20 </div>
New_York'); 21
Bef lline d he ti h 22 </body>
efore calling date(), the time zone has 33 <htnls
to be set. To find yours, see www. php .net/
timezones.
00 Mozilla Firefox

Strict Standards: date() [function.date]: It is not safe to rely on the system's timezone
settings. Please use the date .timezone setting, the TZ environment variable or the
date_default_timezone_set() function. In case you used any of those methods and you are
still getting this warning, you most likely misspelled the timezone identifier. We selected
'‘America/New_York' for 'EDT/-4.0/DST instead in /Users/larryullman/Sites/index2.php
on line 7

T .m:[]

Figure 8.13 As of PHP 5.1, notices will be generated when a date or time function is used
without the time zone being set.

206

www.php.net/timezones
www.php.net/timezones

Creating Web Applications

. Use the date() function to print out

today’s date and time:

print date('g:i a1l F j');

Using the formatting parameters from
Table 8.1, the date() function will return
avalue like 4:15 pm Sunday February 22.
This value will immediately be printed.

Close the PHP section and finish the
HTML code:

?7></p>

Save the file as footer.html, place it
in the templates directory of your
PHP-enabled server, and test it in your
Web browser (Figure 8.14).

v Tips

Because PHP is a server-side technology,
these functions reflect the date and time
on the server. To get the time on the client
(in other words, on the computer where
the Web browser viewing the page is
located), you must use JavaScript.

The server’s time zone can also be

set in the PHP configuration file

(see Appendix A, “Installation and
Configuration”). Establishing the time
zone there is generally a better idea than
doing so on a script-by-script basis.

800

Elliott Smith Fan Club

‘Welcome to the Elliott Smith Fan Club!

Here's a whole lotta text.
Here's a whole lotta text,
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text,
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.
Here's a whole lotta text.

Navigation

Home
Discography
Login
Register

10:46 pm Thursday
October 23

Figure 8.14 The Web
site now displays the
date and time in the
sidebar, thanks to the

date() function.

207

dWI] ANV 31V FHL HLIM SNDRIOM

HANDLING HTML FORMS WITH PHP, REVISITED

Chapter 8

Handling HTML Forms
with PHP, Revisited

All the examples in this book so far have used
two separate scripts for handling HTML forms:
one that displayed the form and another that
received and processed the form’s data. Theres
certainly nothing wrong with this method, but
there are advantages to having the entire pro-
cess in one script. To make a page both display
and handle a form, use a conditional:

if (/* form has been submitted */) {
// Handle the form.

} else {
// Display the form.

}

To determine if the form has been submitted,
you can check whether any variable is set:

if (isset($_POST['something']1)) { ..

However, if the user submitted the form
without completing it, that variable may not
be set. For this and other reasons, I like to
include a hidden input in my forms that I can
check for:

<input type="hidden" name="submitted"
value="true" />

Again, the only purpose of this hidden input
is to reliably indicate that the form has been
submitted. To check for that, the handling
PHP code would use this conditional:

if (isset($_POST['submitted'])) { ..

As an example of this, you'll create the basics
of alogin form.

To use one page to display and handle
aform:

1. Begin anew PHP document in your text
editor or IDE (Script 8.8):

<?php // Script 8.8 - login.php

continues on page 210

208

Creating Web Applications

Script 8.8 The login page serves two purposes. It displays the login form (Figure 8.15) and handles its submission
(Figures 8.16, 8.17, and 8.18).

806 = Seript

1 <?php // Script 8.8 - login.php
2 /* This page lets people log into the site (in theory). */
3
4 // Set the page title and include the header file:
5 define('TITLE', 'Login');
6 require('templates/header.html');
7
8 // Print some introductory text:
9 print '<hl>Login Form</h1l>
10 <p>Users who are logged in can take advantage of certain features like this, that, and the
other thing.</p>";
11
12 // Check if the form has been submitted:
13 if (isset($_POST['submitted'])) {
14
15 // Handle the form:
16 if ((lempty($_POST['email'])) && (!empty($_POST['password']))) {
17
18 if ((strtolower($_POST['email']) == "'me@example.com') && ($_POST['password'] ==
'testpass')) { // Correct!
19
20 print '<p>You are logged in!
Now you can blah, blah, blah...</p>";
21
22 } else { // Incorrect!
23
24 print '<p>The submitted email address and password do not match those on file!
Go back and try again.</p>';
25
26 }
27
28 } else { // Forgot a field.
29
30 print '<p>Please make sure you enter both an email address and a password!
Go back
and try again.</p>';
31
32 }
33
34 1} else { // Display the form.
35
36 print '<form action="login.php" method="post">
37 <p>Email Address: <input type="text" name="email" size="20" /></p>
38 <p>Password: <input type="password" name="password" size="20" /></p>
39 <p><input type="submit" name="submit" value="Log In!" /></p>
40 <input type="hidden" name="submitted" value="true" />
41 </form>";
42
43 1}
44
45 require('templates/footer.html'); // Need the footer.
46 7>

209

a3LISIATY ‘dHd HLIM SW¥04 TWLH ONITaNVH

HANDLING HTML FORMS WITH PHP, REVISITED

Chapter 8

2.

Define the page title as a constant and
include the header file:

define('TITLE', 'Login');
require('templates/header.html');
Using the constant system developed ear-
lier in the chapter, give this page its own
unique page title.

Add some introductory text:
print '<hl>Login Form</h1>

<p>Users who are logged in can
take advantage of certain
features like this, that, and
the other thing.</p>";

This text, which appears outside of the
main conditional, will always show in the
Web browser, whether the form is being
displayed or has been submitted. Because
the core of this script revolves around a
PHP conditional, you print out the HTML
from PHP rather than exit out of the

PHP code as you did in the previous two
examples (index.php and albums . php).

Begin the conditional to check whether
the form has been submitted:

if (isset($_POST['submitted'])) {

To test whether the form has been
submitted, check whether the
$_POST['submitted'] variable has
avalue (is set). This will be a hidden
variable with a preset value, so it
will always be set if the form has
been submitted.

210

Creating Web Applications

5. Create a nested pair of conditionals to

process the form data
if C (lempty($_POST['email'])) &&
(lempty($_POST['password'1))) {
if ((strtolower($_POST['email'])
== "me@example.com') &&
($_POST['password'] ==
"testpass')) {
print '<p>You are logged in!

Now you can blah, blah,
blah...</p>";

} else {

print '<p>The submitted email
address and password do not
match those on filel
Go
back and try again.</p>";

}
} else {
print '<p>Please make sure you

enter both an email address and

a password!
Go back and try

again.</p>";
}
These conditionals handle the form data.
The first conditional checks that both the
email address and password variables
have values. If they don't, a message is
displayed (Please make sure...). Within
that first conditional, another conditional
checks whether the email address is equal
to me@example.com and the password is
equal to testpass. If so, let’s say the user
islogged in (it would be too advanced at
this juncture to store and retrieve user
information). Otherwise, a message indi-
cates that the wrong values were entered.

Be certain to use the equals operator (==)
here and not the assignment operator (=)
in this conditional, which is a common
mistake. Also, in case the user enters their
address as Me@example.com, or any other
capitalized permutation, the strtolower()
function is first applied to the email
address, prior to checking for equality.

continues on next page

211

a3LISIATY ‘dHd HLIM SW¥04 TWLH ONITaNVH

HANDLING HTML ForRmMS wWiTH PHP, REVISITED

Chapter 8

6. Complete the main conditional: 800 Login
. Login Form Navigation
} else { // Dlsplqy the For‘m- Users who are logged i can take advantage of Home

. . . certain features like this, thit, and the other thing. L&Wﬂ}ﬂm
print '<form action="login.php" Sousi Adasses:| Reglstee

method="post"> Passwor] b tried
<p>Email Address: <input (oeed)

type="text" name="email"

size="20" /></p> Figure 8.15 This simple login page takes an email
<p>Password: <input type= address and a password.

"password" name="password"
size="20" /></p>
<p><input type="submit" name=
"submit" value="Log In!" /></p>
<input type="hidden" name=
"submitted" value="true" />

</form>";

}

This concludes the main conditional,
which checks whether the form has been
submitted. If it hasn't been, then the form
is displayed. The form itselfis very simple
(Figure 8.15).

In order for this process to work—where
the same page both handles and displays
the form—the name attribute of your hid-
den input must exactly match the name
of the variable used as the conditional
(and it’s case-sensitive, remember).

212

Creating Web Applications

ano Login
Login Form Navigation
Tlsers who are logged in can take advantage of Eloune
certmn features like ths, that, and the other thing, W
You are logged in! Register
Now you can blah, blah, blah... 11245 pm Thucrsday
Cctober 23

Figure 8.16 Upon successfully logging in, the user
sees this message.

800 Login
Login Form Navigation
Users who are logged in can take Home
advantage of certain features like this, &ﬁm’i
that, and the other thing. Register

Please make sure you enter both an email
address and a password!
Go back and try again.

11:15 pm Thursday
October 23

Figure 8.17 Failure to submit either an email address

or a password results in this message.

800 Login
Laogin Form Navigation
Users who are logged in can take Home
advantage of certain features like this, %g.r_np_hi
that, and the other thing. Register

The submitted email address and
password do not match those on file!
Go back and try again.

11:15 pm Thursday
October 23

Figure 8.18 If either the email address or the
password doesn’t match that in the script, the user
sees this error message.

. Require the footer file and complete the

PHP page:
require('templates/footer.html');

7>

Save the file as login.php, place it in the
same directory as index.php, and test it
in your Web browser (Figures 8.16, 8.17,
and 8.18).

v Tips

In the real world, I'd probably add some
CSS formatting to the error messages so
that they stand out. The next section of
the chapter will include this feature.

This little trick of checking for the pres-
ence of a hidden input can be confusing.
This works because the same script—
login.php—will be accessed twice by the
user. The first time the form will not have
been submitted, so the main conditional
will be FALSE and the form will be dis-
played. Then the page will be accessed
again after the user clicks submit, at
which point the conditional becomes
TRUE.

If you want a page to handle a form and
then immediately display the form again,
do this:

if (isset($_POST['submitted'])) { ..
// Handle the form.

}
// Display the form.

213

a3LISIATY ‘dHd HLIM SW¥04 TWLH ONITaNVH

MAKING FORMS STICKY

Chapter 8

Making Forms Sticky

A sticky form remembers values entered into it.
A common example is a search engine, which
always displays your terms in the search box,
even when showing the results of the search.
You might also want to use sticky forms on
occasions where the user failed to complete a
form accurately and therefore must resubmit it.

From a technological standpoint, sticky forms
work by having your form element values be
predetermined. You can do this by setting the
value input when you create the form:

<input type="text" name="first_name"
value="Stephanie" />

To have PHP preset that value, print the
appropriate variable between the quotation
marks:

<input type="text" name="first_name"
value="<?php print $first_name; ?>" />

The first time the form is run, the PHP code
prints nothing (because the variable has no
value). If the form is displayed again after
submission, values that the user originally
entered in the form input will be displayed
there automatically. That’s the basic idea, but
amore professional implementation would
address two things...

First, it's best not to refer to variables that don't
exist, so to avoid that, check that the variable
is set before printing it. Second, certain char-
acters that could be in a submitted value will
cause problems if printed as a form element’s
value. To prevent such problems, apply the
htmlspecialchars() function (discussed in
Chapter 5, “Using Strings”). With this in mind,
alonger but better version of this code is:

<input type="text" name="first_name"
value="<?php if (isset($first_name)
{ print htmlspecialchars($first_name);
">

To demonstrate, you'll create the shell of a
registration form (Figure 8.19).

eno Register
Registration Form Navigation
Itegister 50 that you can take advaniage of certain Homs.
features like this, that, and the ather thing, D—'m‘-’mmi.
Fird Name: [| Bl

2:57 pm Friday October

Last Name: L
Email Address:
Passwiord:
Confirm Password:
(Regimert)

Figure 8.19 The registration form as the user first
sees it.

214

Creating Web Applications

Script 8.9 The registration form uses a so-called sticky
feature so that it recalls the values entered into it.

8e6e6 =1 Seript

|1 <?php // Script 8.9 - register.php

:2 /* This page lets people register for the

: site (in theory). */

|3

:4 // Set the page title and include the

| header file:

:5 define('TITLE', 'Register');

|6 require('templates/header.html');

|7

:8 // Print some introductory text:

:9 print '<hl>Registration Form</hl>

| 10 <p>Register so that you can take

: advantage of certain features like

: this, that, and the other thing.</p>";

11

12 // Add the CSS:

13 print '<style type="text/css" media=

"screen">

14 .error { color: red; }

15 </style>';

16

17 // Check if the form has been submitted:

18 if (isset($_POST['submitted'])) {

19

20 $problem = FALSE; // No problems so far.

21

22 // Check for each value...

23 if Cempty($_POST['first_name'])) {

24 $problem = TRUE;

25 print '<p class="error">Please
enter your first name!</p>";

26 }

27

28 if (empty($_POST['last_name'])) {

29 $problem = TRUE;

30 print '<p class="error">Please
enter your last name!</p>";

31 }

32

33 if (empty($_POST['email'])) {

34 $problem = TRUE;

35 print '<p class="error">Please
enter your email address!</p>";

36 }

37

(script continues on next page)

To make a sticky form:

1. Create a new PHP script in your text
editor or IDE (Script 8.9):

<?php // Script 8.9 - register.php

2. Setthe page title and include the HTML
header:
define('TITLE', 'Register');
require('templates/header.html');

3. Add some introductory text and define a
CSS class:
print '<hl>Registration Form</hl>
<p>Register so that you can take
advantage of certain features
like this, that, and the other
thing.</p>";
print '<style type="text/css"
media="screen">
.error { color: red; }
</style>";
So that the error messages, generated by
improperly completing the registration
form, stand out, a CSS class is defined
that colors the applicable text in red.
Although CSS is normally defined in the
page’s head, you can put it anywhere.

4. Check whether the form has been
submitted:
if (isset($_POST['submitted'])) {
Like the login page, this script both dis-
plays and handles the registration form.
After the form is submitted, there will be a
$_POST['submitted'] variable that is set,
making this conditional TRUE, indicating
that the form data should be validated.
You don't have to use this technique to
make a sticky form, but it makes the pro-
cess significantly easier.

continues on page 217

215

AIDDILS SWI04 9NDIVN

MAKING FORMS STICKY

Chapter 8

Script 8.9 continued

ece =] Seript

38 if Cempty($_POST['passwordl'])) {

39 $problem = TRUE;

40 print '<p class="error">Please enter a password!</p>";
41 }

42

43 if ($_POST['passwordl'] != $_POST['password2']) {
44 $problem = TRUE;

45 print '<p class="error">Your password did not match your confirmed password!</p>";
46 }

47

48 if (!$problem) { // If there weren't any problems...
49

50 // Print a message:

51 print '<p>You are now registered!
0kay, you are not really registered but...</p>";
52

53 // Clear the posted values:

54 $_POST = array();

55

56 } else { // Forgot a field.

57

58 print '<p class="error">Please try again!</p>";
59

60 }

61

62 } // End of handle form IF.

63

64 // Create the form:

65 7>

66 <form action="register.php" method="post">

67

68 <p>First Name: <input type="text" name="first_name" size="20" value="<?php if (isset($_POST
['first_name'])) { print htmlspecialchars($_POST['first_name']); } 7>" /></p>

69

70 <p>Last Name: <input type="text" name="last_name" size="20" value="<?php if (isset($_POST
['last_name'])) { print htmlspecialchars($_POST['last_name']); } ?>" /></p>

71

72 <p>Email Address: <input type="text" name="email" size="20" value="<?php if (isset($_POST
["email'])) { print htmlspecialchars($_POST['email']); } 7>" /></p>

73

74 <p>Password: <input type="password" name="passwordl" size="20" /></p>

75 <p>Confirm Password: <input type="password" name="password2" size="20" /></p>

76 <p><input type="submit" name="submit" value="Register!" /></p>

77 <input type="hidden" name="submitted" value="true" />

78 </form>

79

80 <?php require('templates/footer.html'); // Need the footer. 7>

216

Creating Web Applications

5.

Create a flag variable:
$problem = FALSE;

The $problem variable will be used to
indicate whether a problem occurred.
Specifically, you want to make sure that
every form input has been filled out
before you formally register the user.
Initially, this variable is set to FALSE,
because no problems have occurred.

Check that a first name was entered:
if (empty($_POST['first_name'])) {
$problem = TRUE;

print '<p class="error">Please
enter your first name!</p>";

}

As a simple test to determine whether the
user has entered a first name value, you
check that the variable isn't empty. (This
technique was first discussed in Chapter
6, “Control Structures.’) If the variable is
empty, then you indicate a problem by
setting that variable to TRUE and print an
error message. The error message has a
class type of error, so that the CSS format-
ting is applied.

. Repeat the validation for the last name

and email address:
if (empty($_POST['last_name'])) {
$problem = TRUE;

print '<p class="error">Please
enter your last name!</p>";

}
if (empty($_POST['email'])) {
$problem = TRUE;

print '<p class="error">Please
enter your email address!</p>";

}

Both of these checks are variations on the
username validation routine.

continues on next page

217

AIDDILS SWI04 9NDIVN

MAKING FORMS STICKY

Chapter 8

8.

Validate the passwords:
if (empty($_POST['passwordl'])) {
$problem = TRUE;

print '<p class="error">Please
enter a password!</p>";

}

if ($_POST['passwordl'] !'= $_POST
['password2']) {
$problem = TRUE;

print '<p class="error">Your
password did not match your
confirmed password!</p>";

}

The password validation requires two
conditionals. The first checks whether
the $_POST['passwordl'] variable is
empty. The second checks whether

the $_POST['passwordl'] variable

isn't equal to the $_POST['password2']
variable. You don't need to see if
$_POST['password2'] is empty because
ifitis and $_POST['passwordl'] isn’t,
the second conditional will catch that
problem. If $_POST['password2'] and
$_POST['passwordl'] are both empty, the
first conditional will catch the situation.

Check whether a problem occurred:
if (!$problem) {
print '<p>You are now registered!

0kay, you are not really
registered but...</p>";
$_POST = array();

If there were no problems, the $problem
variable is still FALSE, and the initial con-
dition here is TRUE (the condition being
that $problem has a value of FALSE). In
that case, the registration process would
take place. The formal registration pro-
cess, where the data is stored in a file or
database, has not yet been developed, so a
simple message appears in its stead here.

218

Creating Web Applications

10

11

12

D

Next, the $_POST variable is assigned

the value of array(). This line has the
effect of wiping out the contents of the
$_POST variable (i.e., resetting it as an
empty array). I take this step only upon
a successful (theoretical) registration so
that the values are not redisplayed in the
registration form (e.g., see Step 12).

Complete the conditionals:
} else { // Forgot a field.
print '<p class="error">Please
try again!</p>"';
}
} // End of handle form IF.

The else clause applies if a problem
occurred, in which case the user is asked
to complete the form again.

Begin the HTML form:

7>

<form action="register.php"
method="post">

Unlike the login example, this page
always displays the form. Therefore, the
form isn’t part of any conditional. Also,
because theres a lot of HTML to be gen-
erated, I think it'll be easier to leave the
PHP section of the page and just output
the HTML directly.

Create the sticky first name input:

<p>First Name: <input type="text"
name="first_name" size="20"
value="<?php if (isset($_POST
['first_name'])) { print
htmlspecialchars($_POST
['first_name']); } 7>" /></p>

continues on next page

219

AIDDILS SWI04 9NDIVN

MAKING FORMS STICKY

Chapter 8

13

14.

To make the first name input sticky, you
preset its value attribute by printing
out the $_POST['first_name'] vari-
able, but only if it’s set. The conditional
is therefore put within PHP tags within
the HTMLS value section of the form
element. As already mentioned, the
htmlspecialchars() function is used
to handle any potentially problematic
characters.

Repeat the process for the last name and

email address:

<p>Last Name: <input type="text"
name="last_name" size="20"
value="<?php if (isset($_POST
['last_name'])) { print
htmlspecialchars($_POST['last_
name']); } 7>" /></p>

<p>Email Address: <input type=
"text" name="email" size="20"
value="<?php if (isset($_POST
["email'])) { print
htmlspecialchars($_POST
["email']); 3 2>" /></p>

These are variations on Step 12, switch-

ing the variable names as appropriate.

Add the rest of the form:

<p>Password: <input type="password"
name="passwordl" size="20" /></p>

<p>Confirm Password: <input
type="password" name="password2"
size="20" /></p>

<p><input type="submit" name=
"submit" value="Register!" /></p>

<input type="hidden" name=
"submitted" value="true" />

</form>

You can't preset a value for a password
input, so theres no point in trying. Then
you have the submit button and the
hidden form input (to trigger the form
validation in the PHP code).

220

Creating Web Applications

ano Register
Registration Farm

Register so that you can take advantage of certain
features like this, that, and the other thing.

Please enter your email address!

Fairst Name: Lany
Last Name: Ulimar
Email Address;
Password:
Confirm Password:

{ wegnien)

id Bot match your confimed password!

£:24 pan Fricay October 24

Figure 8.20 The registration form indicates any
problems and retains the form values, except for

the passwords.

8eno Regliter
Registration Form

Register so that you can take advantage of certain
features like this, that, and the ather thing.

You are now regisiered!
Oy, vou are not really registered but_..

First Name:

Last Name:

Email Address:
Passwond:
Confirm Password:

(hegnen)

Navigation

Home

Discography

Locin

Register

£:29 pon Fricdiry October
24

Figure 8.21 The registration form after the user

successfully fills it out.

15. Complete the PHP page:
<?php require('templates/footer.
html'); 7>
The last step is to include the HTML
footer.

16. Save the file as register.php, place it
in the proper directory on your PHP-
enabled server, and test it in your Web
browser (Figures 8.20 and 8.21).

v Tips

B According to (X)HTML rules, you must
quote all attributes in form inputs.
Specifically, you should use double quota-
tion marks. If you don't quote your values,
any spaces in them mark the end of the
value (for example, Larry Ullman will
display as just Larry in the form input).

B To preset the status of radio buttons or
check boxes as checked, add the code
checked="checked" to their input tag;
<input type="checkbox" name=

"interests[]" value="Skiing"
checked="checked" />

Of course, youd need to use a PHP condi-
tional to see if that text should be added
to the element’s definition.

B To preselect a pull-down menu, use
selected="selected":

<select name="year">

<option value="2009">2009</option>

<option value="2010" selected=
"selected">2010</option>

</select>

Again, youd need to use a PHP condi-

tional to see if that text should be added

to the element’s definition.

B To preset the value of a textarea, place the
value between the textarea tags:
<textarea name="comments" rows="10"
cols="50">preset value</textarea>

221

AIDDILS SWI04 9NDIVN

SENDING EMAIL

Chapter 8

Sending Email

Sending email using PHP is theoretically
simple, merely requiring the mail() function.
The mail() function uses the server’s email
application (such as sendmail on Unix or
Mac OS X) or an SMTP (Simple Mail Transfer
Protocol) server to send out the messages.
The basic usage of this function is:

mail(to, subject, body);

The first argument is the email address (or
addresses, separated by commas) to which
the email should be sent. The second argu-
ment establishes the message’s subject line,
and the third argument creates the message’s
content.

This function can take another argument
through which you can add more details
(additional headers) to the email, including
a From address, email priority, and carbon-
copy addresses:

mail('someone@example.com', 'Test
Email', 'This is a test email', 'From:
'email@address.com');

Although this is theoretically easy, actual
usage of this function in real-world code can
be far more complex. For starters, setting up
your own computer to send out email can

be hard (again, see the sidebar). Second, you
should take some steps to prevent malicious
people from trying to use your forms to send
out spam. Unfortunately the necessary steps
are well beyond the scope of this beginner’s
book, but I discuss it in my PHP 6 and MySQL
5 for Dynamic Web Sites: Visual QuickPro
Guide (Peachpit Press, 2007) and online in my
forums (www.DMCInsights.com/phorum/).

All that being said, let's add amail() function
call to the registration page so that you get a
sense of how the function might be used.

222

www.DMCInsights.com/phorum/

Creating Web Applications

Script 8.10 In PHP, you can send email by calling the
mail() function.

806 =1 Seript

|1 <?php // Script 8.10 - register.php #2

:2 /* This page lets people register for the

: site (in theory). */

|3

:4 // Set the page title and include the

: header file:

|5 define('TITLE', 'Register');

:6 require('templates/header.html');

|7

:8 // Print some introductory text:

|19 print '<hl>Registration Form</hl>

:1@ <p>Register so that you can take

: advantage of certain features like

| this, that, and the other thing.</p>";

[11

12 // Add the CSS:

13 print '<style type="text/css" media=

"screen">

14 .error { color: red; }

15 </style>';

16

17 // Check if the form has been submitted:

18 if (isset($_POST['submitted'])) {

19

20 $problem = FALSE; // No problems so

far.

21

22 // Check for each value...

23 if Cempty($_POST['first_name'])) {

24 $problem = TRUE;

25 print '<p class="error">Please
enter your first name!</p>";

26 }

27

28 if Cempty($_POST['last_name'])) {

29 $problem = TRUE;

30 print '<p class="error">Please
enter your last name!</p>";

31 }

32

33 if (empty($_POST['email'])) {

34 $problem = TRUE;

35 print '<p class="error">Please
enter your email address!</p>";

36 }

37

(script continues on next page)

To send email with PHP:

1. Open register.php (Script 8.9) in your

text editor or IDE.

2. After the registration message (line 51),

add the following (Script 8.10):

$body = "Thank you for registering
with the Elliott Smith fan club!
Your password is '{$_POST
['passwordl']}'.";

mail($_POST['email'], 'Registration
Confirmation', $body, 'From:
admin@example.com');

Sometimes the easiest way to use this
function is to establish the body as a
variable and then feed it into the mail()
function. The message itself is sent to the
address with which the user registered,
with the subject Registration Confirmation,
from the address admin@example.com. If
you'll be running this on a live server, you
should use an actual email address for
that site as the from value.

continues on page 225

223

TIVW3 ONIAN3S

SENDING EMAIL

Chapter 8

Script 8.10 continued

ece =] Seript

38 if Cempty($_POST['passwordl'])) {

39 $problem = TRUE;

40 print '<p class="error">Please enter a password!</p>";

41 3

42

43 if ($_POST['passwordl'] != $_POST['password2']) {

44 $problem = TRUE;

45 print '<p class="error">Your password did not match your confirmed password!</p>";

46 }

47

48 if (!$problem) { // If there weren't any problems...

49

50 // Print a message:

51 print '<p>You are now registered!
0kay, you are not really registered but...</p>";

52

53 // Send the email:

54 $body = "Thank you for registering with the Elliott Smith fan club! Your password is
'{$_POST['password1']}"'.";

55 mail($_POST['email'], 'Registration Confirmation', $body, 'From: admin@example.com');

56

57 // Clear the posted values:

58 $_POST = array();

59

60 } else { // Forgot a field.

61

62 print '<p class="error">Please try again!</p>";

63

64 }

65

66 } // End of handle form IF.

67

68 // Create the form:

69 7>

70 <form action="register.php" method="post">

71

72 <p>First Name: <input type="text" name="first_name" size="20" value="<?php if (isset($_POST
['first_name'])) { print htmlspecialchars($_POST['first_name']); } ?>" /></p>

73

74 <p>Last Name: <input type="text" name="last_name" size="20" value="<?php if (isset($_POST
['"last_name'])) { print htmlspecialchars($_POST['last_name']); } 7>" /></p>

75

76 <p>Email Address: <input type="text" name="email" size="20" value="<?php if (isset($_POST
["email'])) { print htmlspecialchars($_POST['email']); } ?>" /></p>

77

78 <p>Password: <input type="password" name="passwordl" size="20" /></p>

79 <p>Confirm Password: <input type="password" name="password2" size="20" /></p>

80 <p><input type="submit" name="submit" value="Register!" /></p>

81 <input type="hidden" name="submitted" value="true" />

82 </form>

83

84 <?php require('templates/footer.html'); // Need the footer. 7>

224

Creating Web Applications

ano Register
Registration Form Navigation
Hegister s that you can take advantage of centain Home
features like this, that, and the other thing. Eﬁm
First Name: [Laey | Reguer

’ 858 pan Fridey Oclober 24
Last Name: | wiman

Email Address: [Tary@amemights com
Password: [ceeessss

Confirm Password: seeeeses

From: admin@example.com

Date: October 24, 2008 3:01:03 PM EDT
To: Larry Ullman <larmry@dmeinsights come

P Conf

Thank vou for registering with the Elliot Smith fan club! Your
password is password”

Figure 8.23 This email was sent by the PHP script
upon successful pseudo-registration.

. Save the file, place it in the proper direc-

tory of your PHP- and email-enabled
server, and test it in your Web browser
(Figure 8.22).

Check your email for the message
(Figure 8.23).

v Tips

If you have problems receiving the PHP-
sent email, start by confirming that the
mail server works on its own without
involving PHP. Then make sure you'e
using a valid from address. Finally, try
using different recipient addresses and
keep an eye on your junk folder to see
that the message isn't getting put there
(if applicable).

It’s possible to send email with attach-
ments or HTML email, although doing so
requires far more sophisticated coding
(normally involving classes and objects).
Fortunately, a number of program-

mers have already developed workable
solutions that are available for use. See
Appendix B, “Resources and Next Steps,
for Web sites that may be of assistance.

The mail() function returns a value (1 or
0) indicating its successful use. This value
only indicates whether PHP was able

to attempt to send the email (by using
whatever email system is in place). There's
no easy way to use PHP to tell whether an
email address is valid or whether the end
user received the message.

continues on next page

225

TIVW3 ONIAN3S

SENDING EMAIL

Chapter 8

To send an email to multiple addresses,
either use the CC parameter or separate
each 70 address with a comma.

To create new lines within the email body,
either create the message over multiple
lines or use the newline character (\n)
within double quotation marks.

If you want to send multiple headers in
addition to the From address, separate
them with a combination of \r\n:

mail ('email@example.com',
'Testing', $body, "From:email@
example.org\r\nBcc:hidden@example.
net,third@®example.com");

Configuring Your Server
to Send Email

Sending email with PHP is easy, as long as
your Web server (or computer) is set up to
send email. If youTe using a Web host-

ing service or your own Unix computer
(like Linux), this shouldn't be a problem.
However, if youTe running your own
Windows or Mac OS X machine—as you
may well be—this could be a sticking point.

To start, go ahead and try this example
using a valid email address. If you don't
receive the email, see Appendix A for
information about gettingmail() to work.
I'll also add that I almost never worry
about getting PHP on my own computer

to send out emails because I'll never be
running actual, live Web sites from my
computer. In other words, why waste time
getting something to work that you'll never
end up using (whereas getting PHP to send
out email on a live server does matter).

226

Creating Web Applications

Output Buffering

There are a handful of functions that you'll
use in this chapter and the next that can only
be called if nothing has been sent to the Web
browser. These functions include header(),
setcookie(), and session_start().Ifyou
use them after the Web browser has already
received some text, HTML, or even a blank
space, you'll get a dreaded headers already
sent error message (Figure 8.24).

One solution that I recommend for beginning
PHP developers is to make use of output buff-
ering (also called output control). In a normal
PHP script, any HTML outside of the PHP
tags is immediately sent to the Web browser,
asis all printed content, as soon as the
print() statement is executed. With output
buffering, the HTML and printed data—the
output—will instead be put into a buffer

(i.e., memory). At the end of the script, the
buffer will then be sent to the Web browser,
or if appropriate, the buffer can be cleared
without being sent to the Web browser. There
are many reasons to use output buffering, but
for beginners, one benefit is that you can use
certain functions without worrying about
headers already sent errors. Although you
haven't dealt with any of these functions yet,
this chapter introduces output buffering

continues on next page

000 Login =™
Login Form

Users who are logged in can take advantage of
certain features like this, that, and the other thing.

(Warning: Cannot modify header information - headers
already sent by (output started at /Users/larryullman/Sites
templates/headerhtml:6) in /Users/larryullman/Sites
Vlogin.php on line 21

2

Figure 8.24 If the browser receives any HTML prior to a header() call, you’ll
see this error message.

227

ONI¥34ing Lnd1NQ

OUTPUT BUFFERING

Chapter 8

now because it will greatly reduce errors as
you begin using headers (in the next section
of this chapter), cookies (in the next chapter),
and sessions (also in the next chapter).

To begin output buffering, use the ob_
start() function at the very top of your
page. Once you call it, every print() and
similar function will send data to a memory
buffer rather than to the Web browser.
Conversely, HTTP calls (like header() and
setcookie())won't be buffered and will
operate as usual.

At the conclusion of the script, call the
ob_end_flush() function to send the accu-
mulated buffer to the Web browser. Or, use
the ob_end_clean() function to delete the
buffered data without passing it along. Both
functions also turn off output buffering for
that script.

From a programmer’s perspective, output
buffering allows you to structure a script in a
more linear form, without concern for HTTP
headers. Let’s remake header . html and
footer.html so that every page uses output
buffering. You won't appreciate the benefits
yet, but the number of errors you won't see
over the rest of this book will go along way
toward preserving your programming sanity.

To use output buffering:

1. Open header.html (Script 8.6) in your
text editor or IDE.

2. Atthe very top of the page, before
any HTML code, add the following
(Script 8.11):
<?php
ob_start();
7>
The key to using output buffering is to
call the ob_start() function as early as
possible in a script. In this example, you
create a special section of PHP prior to any

Script 8.11 Add output buffering to the Web application
by placing the ob_start() function at the top of the
header.html script.

eo0e = Saript
|1 <?php // Script 8.11 - header.html #3

I3 // Turn on output buffering:
| 4 ob_start();

|6 ?><!DOCTYPE html PUBLIC "-//W3C//DTD
| XHTML 1.0 Transitional//EN"

| 7 "http://www.w3.0rg/TR/xhtml1/DTD/
: xhtml1-transitional .dtd">

:8 <html xmlns="http://www.w3.0rg/1999/
: xhtml" xml:lang="en" lang="en">
|
|
|
|
|

9 <head>

10 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

11 <title><?php // Print the page title.

12 if (defined('TITLE')) { // Is the
title defined?

13 print TITLE;

14 } else { // The title is not defined.

15 print "Elliott Smith Fan Club';

16 }

17 ?></title>

18

19 <style type="text/css">

20 body {

21 margin:@px @px @px Opx;

22 background: #9F9;

23 }

24 #leftcontent {

25 float:left;

26 width:67%;

27 background:#fff;

28 border-right:2px solid #000;

29 border-bottom:2px solid #000;

30 margin-right:15px;

31 padding-bottom:20px;

32 }

33 p,hl,pre {

34 margin:@px 30px 10px 30px;

35 }

36 hl {

37 font-size:14px;

38 padding-top:10px;

39 }

(script continues on next page)

228

Creating Web Applications

Script 8.11 continued

eeceoe = Seript
| 40 #rightcontent p {
:41 font-size:14px;
:42 margin-left:0px; 3,
:43 }
| 44 </style>
Las 4
|46 </head>
|47 <body>
:48 <div id="leftcontent">

<!-- BEGIN CHANGEABLE CONTENT. -->

| 49

HTML and call ob_start() there. By turn-
ing on output buffering in your header file
and turning it off in your footer file, you
buffer every page in the Web application.

Open footer.html (Script 8.7) in your
text editor or IDE.

At the end of the script, after all of the
HTML, add (Script 8.12):

<?php

ob_end_flush();

7>

This code turns off output buffering and
sends the accumulated buffer to the Web
browser. In other words, all the HTML is
sent at this point.

continues on next page

Script 8.12 Output buffering is completed at the end of the footer file using ob_end_flush(), which sends the
accumulated buffer to the Web browser.

eee = Script
1 <!-- END CHANGEABLE CONTENT. -->

2 </div>

3

4 <div id="rightcontent">

5 <h1>Navigation</h1>

6 <p>Home

7 Discography

8 Login

9 Register</p>

10

11 <p><?php // Print the current date and time:
12 // Set the timezone:

13 date_default_timezone_set('America/New_York');
14

15 // Now print the date and time:

16 print date('g:i alF j');

17 ?7></p>

18

19 </div>

20

21 </body>

22 </html><?php // Script 8.12 - footer.html #3

23

24 // Send the buffer to the browser and turn off buffering:
25 ob_end_flush();

26 7>

229

ONI¥34ing Lnd1NQ

OUTPUT BUFFERING

Chapter 8

5.

6.

Save both files and place them in the
templates directory of your PHP-enabled
server.

Test any page in your Web browser
(Figure 8.25).

v Tips

Just to clarify, PHP code can be placed in
afile with a .html extension—as in these
two examples here—if that file is being
included by a PHP script (like index . php).

For some time now, output buffering is
automatically enabled in PHP’s default
configuration.

You can set the maximum buffer size in
the php.ini file. The default is 4,096 bytes.

The ob_get_length() function returns
the length (in number of characters) of
the current buffer contents.

The ob_get_contents() function returns
the current buffer so that it can be
assigned to a variable, should the need
arise.

The ob_flush() function sends the cur-
rent contents of the buffer to the Web
browser and then discards them, allowing
anew buffer to be started. This function
lets your scripts maintain more moderate
buffer sizes.

The ob_clean() function deletes the
current contents of the buffer without
stopping the buffer process.

PHP automatically runs ob_end_flush()
at the conclusion of a script if it isn't
otherwise done. But it’s still a good idea to
call it yourself.

en0 Records by Elliott Smith

Elliott Smith's Albums Navigation
Home

. Ra!nan Ca_nd]c Dichutiah

« Elliott Smith Login

« Either/Or Register

» X0 9:43 pm

» Figure 8 Friday

« From a Basement On the Hill Octaber 24

« New Moon

Figure 8.25 The site works the same as it did
previously, but it will be easier to work with when
you use HTTP headers later in this chapter.

230

Creating Web Applications

Manipulating HTTP
Headers

An HTTP (Hypertext Transfer Protocol)
header is used to send information back and
forth between the server and the client (the
Web browser). Normally this information

is in the form of HTML, which is why the
addresses for Web pages begin with http://.

But the subject of HTTP headers is com-
plicated enough to warrant a little more
attention. There are dozens of uses for HTTP
headers, all of which you can take advantage
of using PHP’s header() function.

This section demonstrates a common

use: redirecting the user from one page to
another. To redirect the user’s browser with
PHP, you send a location header:

header('Location: page.php');

Normally, the header() function is followed
by exit(), to cancel the execution of the
script (because the browser has been redi-
rected to another page):

header('Location: page.php');
exit();

The most important thing to understand
about using header() is that the function
must be called before anything else is sent

to the Web browser—otherwise, you'll see
the all-too-common headers already sent
error message (Figure 8.24). If your Web page
receives any HTML or even blank space, the
header() function won't work.

Fortunately for you, the preceding section
introduced output buffering. Because output
buffering is turned on in the Web application,
nothing is sent to the Web browser until the
very last line of the footer script (when ob_
end_flush() is called). By using this method,
you can avoid errors like those in Figure 8.24.

continues on next page

231

S¥3aViH dLLH ONILVINdINVIN

MANIPULATING HTTP HEADERS

Chapter 8

To demonstrate redirection, you'll rewrite the
login page to take the user to a welcome page
upon successful login.

To use the header() function:

1. Open login.php in your text editor or IDE
(Script 8.8):

2. Delete the You are logged in... print()
statement (Script 8.13).
Because the user is redirected to another
page, theres no need to include this
message.

Script 8.13 The new version of the login page redirects
the user to another page using the header() function.

eoce = Script
|1 <?php // Script 8.13 - login.php #2
:2 /* This page lets people log into the site
: (in theory). */
3
:4 // Set the page title and include the
| header file:
|5 define('TITLE', 'Login');
:6 require('templates/header.html');
[7
:8 // Print some introductory text:
:9 print '<hlsLogin Form</hl>
:10 <p>Users who are logged in can take
| advantage of certain features like
| this, that, and the other thing.</p>';
11
12 // Check if the form has been submitted:
13 if (isset($_POST['submitted'])) {
14
15 // Handle the form:
16 if C (lempty($_POST['email'])) &&
(lempty($_POST['password']))) {
17
18 if ((strtolower($_POST['email'])
== "me@example.com') & ($_POST
['password'] == "testpass'))
{ // Correct!
19
20 // Redirect the user to the
welcome page!
21 ob_end_clean(); // Destroy the
buffer!
22 header ('Location: welcome.php');
23 exitQ;
24
25 } else { // Incorrect!
26
27 print '<p>The submitted email
address and password do not
match those on filel
Go
back and try again.</p>';
28
29 }
30

(script continues on next page)

232

Creating Web Applications

3. Where the print() statement was, add:
ob_end_clean();
header ('Location: welcome.php');
exit();
The first line destroys the page buffer
(because the accumulated buffer won't be
used). This isn't strictly required but is a
good idea. The next line redirects the user
towelcome.php. The third line terminates
the execution of the rest of the script.

4. Save the file and place it in the proper
directory for your PHP-enabled server
(along with the other scripts from this
chapter).

Now you need to create the welcome.php
page to which the user will be redirected.

Script 8.13 continued

806 = Seript

31 } else { // Forgot a field.

32

33 print '<p>Please make sure you enter both an email address and a password!
Go back
and try again.</p>";

34

35 }

36

37 } else { // Display the form.

38

39 print '<form action="login.php" method="post">

40 <p>Email Address: <input type="text" name="email" size="20" /></p>

41 <p>Password: <input type="password" name="password" size="20" /></p>

42 <p><input type="submit" name="submit" value="Log In!" /></p>

43 <input type="hidden" name="submitted" value="true" />

44 </form>";

45

46 }

47

48 require('templates/footer.html'); // Need the footer.

49 7>

233

S¥3aViH dLLH ONILVINdINVIN

MANIPULATING HTTP HEADERS

Chapter 8

To write welcome.php:

1. Begin anew PHP document in your text
editor or IDE (Script 8.14):

<?php // Script 8.14 - welcome.php

2. Define the page title and include the
header:

define('TITLE', 'Welcome to the

Elliott Smith Fan Club!');

require('templates/header.html');

Script 8.14 The welcome page greets the user after they’ve logged in.

eoeoe =) Seript

1 <?php // Script 8.14 - welcome.php

2 /* This is the welcome page. The user is redirected here

3 after they successfully log in. */

4

5 // Set the page title and include the header file:

6 define('TITLE', 'Welcome to the Elliott Smith Fan Club!');

7 require('templates/header.html');

8

9 // Leave the PHP section to display lots of HTML:

0 7>

11

12 <hl>Welcome to the Elliott Smith Fan Club!</hl>

13 <p>You've successfully logged in and can now take advantage of everything the site has to
offer.</p>

14 <p>Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a
whole lotta text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta
text. Here's a whole lotta text. Here's a whole lotta text. Here's a whole lotta text. </p>

15

16 <?php require('templates/footer.html'); // Need the footer. ?>

234

Creating Web Applications

800 Login =)
Login Form Navigation
Users who are logged in can take Home
advantage of certain features like this, Eﬁmﬂt
that, and the other thing. Register
Email Address: | me@example.com 9:57 pm Friday

October 24
Password: |sessseee
Figure 8.26 The login form...

800 Welcome to the Elliott Smith Fan Club! (=)
‘Welcome to the Elliott Smith Fan Club! Navigation
You've successfully logged in and can Home
now take advantage of everything the %gﬁp—hx
site has to offer. Register

Here's a whole lotta text. Here's a whole
lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole
lotta text. Here's a whole lotta text.
Here's a whole lotta text. Here's a whole
lotta text. Here's a whole lotta text.
Here's a whole lotta text.

9:58 pm Friday
October 24

Figure 8.27 ...and the redirection if the user properly

logged in.
e0o0o Login (D)

Login Form Navigation

Users who are logged in can take Home

advantage of certain features like this, %m‘l

that, and the other thing. chg e

The submitted email address and 9:58 pm Friday
October 24

password do not match those on file!
Go back and try again.

Figure 8.28 If the user didn’t properly log in, they

remain on the login page.

3.

Create the page content:
7>

<h1l>Welcome to the Elliott Smith Fan
Club!</h1>

<p>You've successfully logged in
and can now take advantage of
everything the site has to offer.
</p>

<p>Here's a whole lotta text. Here's
a whole lotta text. Here's a whole
lotta text. Here's a whole lotta
text. Here's a whole lotta text.
Here's a whole lotta text. Here's
a whole lotta text. Here's a whole
lotta text. Here's a whole lotta
text. Here's a whole lotta text.
</p>

Return to PHP and include the footer:

<?php require('templates/footer.
html'); 7>

Save the script as welcome. php, place it
in the same directory as the new version
of login.php, and test it in your Web
browser (Figures 8.26, 8.27, and 8.28).

235

S¥3aViH dLLH ONILVINdINVIN

MANIPULATING HTTP HEADERS

Chapter 8

v Tips

B The headers_sent() function returns
TRUE if the page has already received
HTTP headers and the header() function
can't be used.

B Using the GET method trick, you can pass
values from one page to another using
header():
$var = urlencode('Pass this text');
header ("Location: page.php?

message=$var");

B The header() function should technically
use a full path to the target page when
redirecting. For example, it should be
header ('Location: http://www.

example.com/welcome.php');
or
header ('Location: http://localhost/
welcome.php');
In my book PHP 6 and MySQL 5 for
Dynamic Web Sites: Visual QuickPro Guide
I show some code for dynamically gen-
erating an absolute URL based upon the
location of the current script.

236

COOKIES AND

SESSIONS

Chapter 8, “Creating Web Applications,
covers a number of techniques for develop-
ing more complete Web applications. One of
the problems you'll encounter as you begin
to assemble a multipage Web site is that the
Hypertext Transfer Protocol (HTTP) is a
stateless technology. This means that you as
a Web developer have no built-in method for
tracking a user or remembering data from
one page of an application to the next. This
is a serious problem, because e-commerce
applications, user registration and login sys-
tems, and other common online services rely
on this functionality. Fortunately, maintain-
ing state from one page to another is fairly
simple using PHP.

This chapter discusses the two main methods
for tracking data: cookies and sessions. You'll
start by learning how to create, read, modity,
and delete cookies. Then you'll see how easy
it is to master sessions, a more potent option
for maintaining state.

237

SNOISS3S ANV SII00)

WHAT ARE COOKIES?

Chapter 9

What Are Cookies?

Prior to the existence of cookies, travers-

ing a Web site was a trip without a history.
Although your browser tracks the pages you
visit, allowing you to use the Back button

to return to previously visited pages and
indicating visited links in a different color, the
server keeps no record of who has seen what.
This is still true for sites that don't use cook-
ies, as well as for users who have disabled
cookies in their Web browsers (Figure 9.1).

Why is that a problem? If the server can't track
auser, there can be no shopping carts for you
to use to make purchases online. If cookies
didn't exist (or if theyre disabled in your Web
browser), people wouldn't be able to use popu-
lar sites that require user registration.

Cookies are a way for a server to store informa-
tion about the user—on the user’s machine—
so that the server can remember the user over
the course of the visit or through several visits.
Think of a cookie like a name tag: You tell the
server your name, and it gives you a name tag.
Then it can know who you are by referring
back to the name tag.

This brings up another point about the secu-
rity issues involved with cookies. Cookies
have gotten a bad rap because users believe
cookies allow a server to know too much
about them. However, a cookie can only be
used to store information that you give it, so
it’s as secure as you want it to be.

Ot B 84 £

Man Tabs Content Applications | Privacy Securty Advanced

- History

Keep my histary for at least days

Remember what T enter in Forms and the search bar
Remember what I've downloaded

- Cookies

Accept cookies From sites

Accept third-party cookies

eep url <o ol

 they expire
Private Data — I close Firefox
ask me every time .
[Alpays clear by privace amer dse Firsfox
Ask me before clearing private data
l [s]4 J [Cancel] [Help I

Figure 9.1 Most Web browsers let users set the
cookie-handling preferences. This is Firefox 3’s
Privacy tab.

238

Cookies and Sessions

PHP has very good support for cookies. In
this chapter, you'll learn how to set a cookie,
retrieve information from a cookie, and then
delete the cookie. You'll also see some of the
optional parameters you can use to apply
limits to a cookies existence.

Before moving on, there are two more things
you ought to know about cookies. The first
is how to debug cookie-related problems.
This is discussed in the sidebar. The second
is how a cookie is transmitted and received
(Figure 9.2). Cookies are stored in the Web
browser, but only the site that originally sent
a cookie can read it. Also, the cookies are
read by the site when the page on that site

is requested by the Web browser. In other
words, when the user enters a URL in the
address bar and clicks Go (or whatever), the
site reads any cookies it has access to and
then serves up the requested page. This order
is important because it dictates when and
how cookies can be accessed.

Web Browser (client)

Server

SN 111 1 T | e} |
[[[3

b=

1. URL Request

HTML

PHP script
3. URL Request ang Cookies > |

HTML page

PHP script

Figure 9.2 Two basic cookies transactions in the client/server relationship.

239

$SINI00) UY LYHM

WHAT ARE COOKIES?

Chapter 9

Debugging Cookies

When you begin working with cookies in PHP, you'll need to know how to debug your scripts
when problems occur. Three areas might cause you concern:

& Sending the cookie with PHP
& Receiving the cookie in your Web browser
& Accessing a cookie in a PHP script

The first and last issues can be debugged by printing out the variable values in your PHP scripts
(as you'll soon learn). The second issue requires that you know how to work with cookies in
your Web browser. For debugging purposes, you'll want your Web browser to notify you when a
cookie is being sent.

With Internet Explorer 7 on Windows, you can do this by choosing Internet Options under the
Tools menu. Then click the Privacy tab, followed by the Advanced button under Settings. Click
“Override automatic cookie handling;” and then choose Prompt for both First-party and Third-
party Cookies. Other versions of Internet Explorer use different variations on this process.

Firefox users on any platform can control cookies through the Cookies subsection of the
Privacy tab in the Preferences (on Mac OS X) or Options (on Windows) window. Safari on Mac
OS X doesn't give you as many cookie options, but they can be found on the Security tab of the
Preferences window.

Some browsers also let you browse through the existing cookies to see their names and values.
Doing so is a great asset in the debugging war.

240

Cookies and Sessions

©) Mozilla Firefox
File Edit Vjew History Bookmarks Tools Help

Warning: Cannot modify header information - headers already sent
by (output started at C'\Program Files\Abyss Web Serverthtdocs
\test.php:3) in C:\Program Files\Abyss Web Serverihtdocs
\test.php on line 4

Figure 9.3 A message like this is what you’ll see if the
setcookie() function is called after anything, even a
blank line, has already been sent to the Web browser.

Confirm setting cookie

The site localhost:8000 wants to set a cookie.
-L Use my choice For all cookies from this site

[HideDeLaiIs] [Allow J[Allow For§essi0n][Deny J

Mame: CookieMarne
Content: This+is+the+cookis+value,
Hast: localhost
Path: f
Send For: Any bype of connection|
Expires: at end of session

Figure 9.4 If the browser is set to prompt the user
for cookies, a message like this will appear for each
cookie sent.

Creating Cookies

An important thing to understand about
cookies is that they must be sent from the
server to the client prior to any other infor-
mation. Should the server attempt to send
a cookie after the Web browser has already
received HTML—even an extraneous white
space—an error message will result and the
cookie won't be sent (Figure 9.3). This is by
far the most common cookie-related error.

Cookies are sent using the setcookie()
function:

setcookie(name, value);
setcookie('CookieName', 'This is the
cookie value.");

That line of code sends to the browser a
cookie with the name CookieName and the
value This is the cookie value. (Figure 9.4).

You can continue to send more cookies to
the browser with subsequent uses of the
setcookie() function, although you'e
limited by the Web browser as to how many
cookies can be sent from the same site:

setcookie('name2', 'some value');
setcookie('name3', 'another value');

Finally, when creating cookies, you can—as
you'll see in this example—use a variable for
the name or value attribute of your cookies:

setcookie($cookie_name, $cookie_value);

For an example of setting cookies, you'll
create a script that allows the user to specify
the text size and color for a page. The page
displays a form for choosing these values and
then handles the form submission. A sepa-
rate page, created in the next section of this
chapter, will use these settings.

241

S3INI00) ONILYIY)

CREATING COOKIES

Chapter 9

To send cookies:

1. Create anew PHP document in your text
editor or IDE (Script 9.1):
<?php // Script 9.1 - customize.php
The most critical issue with cookies is
that they're created before anything is
sent to the Web browser. To accomplish
this, the script begins with a PHP section
that handles the sending of cookies.

Script 9.1 Two cookies will be used to store the user’s choices for the text size and color. This page both displays
and handles the form.

8O6 = Seript

1 <?php // Script 9.1 - customize.php

2

3 // Handle the form if it has been submitted:

4 if (isset($_POST['submitted'])) {

5

6 // Send the cookies:

7 setcookie('font_size', $_POST['font_size']);

8 setcookie('font_color', $_POST['font_color']);

9

10 // Message to be printed later:

11 $msg = "<p>Your settings have been entered! Click here to
see them in action.</p>";

12

13 } // End of submitted IF.
14 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Transitional//EN"

15 "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

16 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

17 <head>

18 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
19 <title>Customize Your Settings</title>

20 </head>

21 <body>

22 <?php // If the cookies were sent, print a message.
23 if (isset($msg)) {

24 print $msg;
25 %

26 7>

27

(script continues on next page)

242

Cookies and Sessions

Script 9.1 continued

8ee =] Seript

28 <p>Use this form to set your
preferences:</p>

29

30 <form action="customize.php"
method="post">

31 <select name="font_size">

32 <option value="">Font Size</option>

33 <option value="xx-small">xx-small</option>

34 <option value="x-small">x-small</option>

35 <option value="small">small</option>

36 <option value="medium">medium</option>

37 <option value="large">large</option>

38 <option value="x-large">x-large</option>

39 <option value="xx-large">xx-large</option>

40 </select>

41 <select name="font_color">

42 <option value="">Font Color</option>

43 <option value="999">Gray</option>

44 <option value="0c@">Green</option>

45 <option value="00f">Blue</option>

46 <option value="c@0">Red</option>

47 <option value="000">Black</option>

48 </select>

49 <input type="submit" name="submit"
value="Set My Preferences" />

50 <input type="hidden" name="submitted"
value="true" />

51 </form>

52

53 </body>

54 </html>

2.

Check whether the form has been
submitted:

if (isset($_POST['submitted'])) {

Using the technique described in the
preceding chapter, this page both
displays and handles the form. If

the form has been submitted, the
$_POST['submitted'] variable is set
and this condition will be TRUE.

Create the cookies:

setcookie('font_size', $_POST['font_
size']);

setcookie('font_color', $_POST
['font_color']);

These two lines create two separate
cookies. One is named font_size and

the other font_color. Their values will

be based on the selected values from
the HTML form, which are stored

inthe $_POST['font_size'] and
$_POST['font_color'] variables.

In a more fully developed application, Id
validate that the user selected a value for
both form elements prior to using them
for cookies.

Create a message and complete the con-
ditional and the PHP section:
$msg = "<p>Your settings have

been entered! Click <a href=

"view_settings.php">here

to see them in action.</p>"';
} // End of submitted IF.
7>
When the form has been submitted, the
cookies will be sent and the $msg variable
will be assigned a string value. This vari-
able will be used later in the script to print
a message.

continues on next page

243

S3II00) ONILYIY)

CREATING COOKIES

Chapter 9

5.

Create the HTML head and opening
body tag:
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Customize Your Settings
</title>
</head>
<body>
All of this code must come after the
setcookie() lines. Not to overstate the
fact, but no text, HTML, or blank spaces
can be sent to the Web browser prior to
the setcookie() calls.

Create another PHP section to report on
the cookies’ being sent:
<?php
if (isset($msg)) {

print $msg;
}
7>
This code prints out a message if the cook-
ies have been sent. The first time the user
comes to the page, the cookies haven't
been sent, so $msg is not set, making this
conditional FALSE, and this print()
invocation never runs. Once the form has
been submitted, $msg has been set by this
point, so this conditional is TRUE.

244

Cookies and Sessions

©) Customize Your Setti ngs - Mozilla Firefox |:| |E||z|

File Edit \iew History Bookmarks Tools Help

l: |j |http:,l’,l’localhost:SDDD,I'customize.php fj‘ v|

TTse this form to set your preferences:

Font Size | % |FDntCDIDr V|[Set by Preferences]

| wo-small
x-small
small

medium
large

wlarge
xx-large

Figure 9.5 This form is used to select the font size
and color used by another PHP page.

7. Begin the HTML form:

<p>Use this form to set your
preferences:</p>

<form action="customize.php"
method="post">

<select name="font_size">

<option value="">Font Size</option>

<option value="xx-small">xx-small
</option>

<option value="x-small">x-small
</option>

<option value="small">small</option>

<option value="medium">medium
</option>

<option value="large">large</option>

<option value="x-large">x-large
</option>

<option value="xx-large">xx-large
</option>

</select>

The HTML form itself is very simple

(Figure 9.5). The user is given one drop-

down menu to select the font size. The

value for each corresponds to the CSS

code used to set the document’s font size:

from xx-small to xx-large.

Because this script both displays and

handles the form, the form’s action attri-

bute points to this same file.

continues on next page

245

S3II00) ONILYIY)

CREATING COOKIES

Chapter 9

8.

Complete the HTML form:
<select name="font_color">

<option value="">Font Color</option>
<option value="999">Gray</option>
<option value="0c0">Green</option>
<option value="00f">Blue</option>
<option value="c00">Red</option>
<option value="000">Black</option>
</select>
<input type="submit" name="submit"
value="Set My Preferences" />
<input type="hidden" name=
"submitted" value="true" />
</form>
The second drop-down menu is used to
select the font color. The menu displays
the colors in text form, but the values are
HTML color values. Normally such values
are written using six characters plus a
pound sign (e.g., #00cc00), but CSS allows
you to use just a three-character version
and the pound sign will be added on the
page that uses these values.
Finally, a hidden input is added that
will trigger the handling of the form data
(see Step 2). Be certain that the name
of the hidden input (here, submitted)
exactly matches the key used in the
conditional at the top of the script
($_POST['submitted']). Otherwise
the form will never be processed.

Complete the HTML page:
</body>
</html>

246

Cookies and Sessions

The site localhost wants to set a cookie.

' "] use my choice for all cookies from this site
/e
(Hrde Details) (Alluw for Sessiun) (Deny) ﬁ

Name: font_size
Content: x-small
Host: localhost
Path: /
Send For: Any type of connection
Expires: at end of session

Figure 9.6 The user sees this message when the
first setcookie() call is made, if they’ve opted to
be prompted before accepting a cookie. This cookie
is storing the value of x-small in a cookie named
font_size.

The site localhost wants to set a second cookie.

' "] use my choice for all cookies from this site
.
(Hide Betails) (A\Iﬂw for Snssinn) C Deny) ﬁ

Name: font_color
Content: 00f
Host: localhost
Path: /
Send For: Any type of connection
Expires: at end of session

Figure 9.7 The second cookie that’s sent is called
font_color and has a value of oof, representing the
color blue.

©) Customize Your, Settings - Mozilla Firefox |:||§||z|
File Edit Wiew History Bookmarks Tools Help

(|j |http:,l’,l’localhost:BDDD,l’customize.php ﬁ '|

Tour settings have been entered! Click here to see
them in action.

Tze this form to set your preferences:

|F0nt8ize V||FDntCDI0r VH Set My Preferences]

Figure 9.8 After submitting the form, the page shows
a message and a link to another page (where the
user’s preferences will be used). That page will be
created next.

10. Save the file as customize.php and place
it in the proper directory for your PHP-
enabled server.

11. Make sure you've set your Web browser
to prompt for each cookie.

To guarantee that the script is working,
you want the browser to prompt you
for each cookie. See the “Debugging
Cookies” sidebar.

12. Run the script in your Web browser
(Figures 9.6,9.7, and 9.8).

v Tips

B Cookies are one of the few PHP tools that
can behave differently from browser to
browser or operating system to operat-
ing system. You should test your cookie-
based applications on as many browsers
and operating systems as you can.

B Ifyou use the output buffering technique
taught in Chapter 8, then you can place
your setcookie() calls anywhere within
the script (because the Web browser won't
receive the data until the ob_end_flush()
function is called).

B Cookies are limited to approximately
4 KB of total data. This is more than
sufficient for most applications.

B To test whether it’s safe to send a cookie,
use the headers_sent() function. It
reports on whether HTTP headers have
already been sent to the Web browser.

247

S3II00) ONILYIY)

READING FROM COOKIES

Chapter 9

Reading from Cookies

Just as form data is stored in the $_POST array
(assuming it used the POST method) and val-
ues passed to a script in the URL are stored
in the $_GET array, the setcookie() function
places cookie data in the $_COOKIE array. To
retrieve a value from a cookie, you only need
to refer to the cookie name as the index of
this array. For example, to retrieve the value
of the cookie established with the line

setcookie('user', 'trout');
you would use the variable $_COOKIE['user'].

Unless you change the cookie's parameters
(as you'll see later in this chapter), the cookie
will automatically be accessible to every
other page in your Web application. You
should understand, however, that a cookie is
never accessible to a script immediately after
it's been sent. You can't do this:

setcookie('user', 'trout');
print $_COOKIE['user']; // No value.

The reason for this is the order in which
cookies are read and sent (see Figure 9.2).

To see how simple it is to access cookie
values, let's write a script that uses the prefer-
ences set in customize. php to specify the
page’s text size and color. The script relies on
CSS to achieve this effect.

248

Cookies and Sessions

To retrieve cookie data with PHP:

1. Begin a new PHP document in your text
editor or IDE (Script 9.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>View Your Settings</title>

continues on next page

Script 9.2 This script sets the font size and color using the values stored in the cookies.

eoceoe = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>View Your Settings</title>

7 <style type="text/css">

8 body {

9 <?php // Script 9.2 - view_settings.php

10

11 // Check for a font_size value:

12 if (isset($_COOKIE['font_size'])) {

13 print "\t\tfont-size: " . htmlentities($_COOKIE['font_size']) . ";\n";
14 } else {

15 print "\t\tfont-size: medium;\n";

16 1}

17

18 // Check for a font_color value:

19 if (isset($_COOKIE['font_color'])) {

20 print "\t\tcolor: #" . htmlentities($_COOKIE['font_color']) . ";\n";
21 } else {

22 print "\t\tcolor: #000; \n";

23}

24

(script continues on next page)

249

S3IM00) WOU4 ONIaAVIY

READING FROM COOKIES

Chapter 9

2. Start the CSS section: Script 9.2 continued
<style type="text/css"> e0e = Seript
25 7
body { | . >)
The page will use CSS to enact the user’s :
N . | 27 </style>
preferences. The aim is to create code like |
| 28 </head>
body { :29 <body>
font-size: x-large; :30 <p>Customize Your
color: #000; : Settings</p>
1 |31 <p>Reset Your
|
. . Setti /a></
The two values will differ based on what | - errings<a></p>
the user selected in the customize.php |
33 <p>

page. In this step, you create the initial :
34 yadda yadda yadda yadda yadda

CSS code. |
:35 yadda yadda yadda yadda yadda
3. Open asection of PHP code: 36 yadda yadda yadda yadda yadda
<?php // Script 9.2 - view_settings. 37 yadda yadda yadda yadda yadda
php 38 yadda yadda yadda yadda yadda
The script will now use PHP to print out 39 </p>
the remaining CSS, based on the cookies. 40
41 </body>
4. Use the font size cookie value, if it exists: 42 </htmls

if (isset($_COOKIE['font_size'])) {
print "\t\tfont-size: " .
htmlentities($_COOKIE['font_
size']) . ";\n";
} else {
print "\t\tfont-size: medium;\n";

}

If the script can access a cookie with a
name of font_size, it will print out that
cookies value as the CSS font-size value.
The isset() function is sufficient to see if
the cookie exists. If no such cookie exists,
PHP will print out a default size, medium.

For security purposes, the cookie’s value
is not directly printed. Instead, it’s run
through the htmlentities() function,
discussed in Chapter 5, “Using Strings.’
This function will prevent bad things from
happening should the user manipulate the
value of the cookie (which is easy to do).

250

Cookies and Sessions

Finally, just to clarify, each print() state-
ment also creates two tabs (using \t) and
one newline character (\n). The purpose
of these is to give the CSS code some
formatting, which will appear in the
HTML source.

Repeat this process for the font color
cookie:
if (isset($_COOKIE['font_color'])) {
print "\t\tcolor: #" .
htmlentities($_COOKIE['font_
color']) . ";\n";
} else {
print "\t\tcolor: #000; \n";

}

Here the CSS’ color attribute is being
assigned a value. The cookie itself is used
the same as in Step 4.

Close the PHP section, complete the CSS
code, and finish the HTML head:

7>
}
</style>
</head>

Start the HTML body and create links to

two other pages:

<body>

<p>Customize
Your Settings</p>

<p>Reset Your
Settings</p>

These two links take the user to two

other PHP pages. The first, customize.

php, has already been written and lets the

user define their settings. The second,

reset.php, will be written later in the

chapter and lets the user delete their

customized settings.

continues on next page

251

S3IM00) WOU4 ONIaAVIY

READING FROM COOKIES

Chapter 9

8. Add some text:

©) View Your Settings - Mozilla Firefox

<p> File Edt ‘fiew History Bookmarks Tools Help
yadda yadda yadda yadda yadda ([| httpsfilocaihost 5000 view_settings.php 77 -
yadda yadda yadda yadda yadda Customize Your Settings

yadda yadda yadda yadda yadda Eeset Yo Settings

yadda yadda yadda yadda yadda mmmmmmmmmmmm
yadda yadda yadda yadda yadda yudde

</p>
. . . Figure 9.9 This page reflects the customized font
This text exists simply to show the choices made using the other PHP script.

effects of the cookie changes.

9. Complete the HTML page:
</body>
</html>

10. Save the file as view_settings.php,
place it in the same directory as custom-
ize.php, and test it in your Web browser
(Figure 9.9).

11. View the source of the page to see the
resulting CSS code (Figure 9.10).

©) Source of: http:/localhost: BODO/view_settings. php - Mozilla Firefox

File Edit Wiew Help
<!POCTYPE ktml PUBLIC "-//W3C//DTD XHTML 1.0 Tramsitional//EN" &
"http S v w3, org/ TR/ xhtrd 10T gkt 1-transitional. déd">
<html smlns="http://wwr.w3.org’ 1999/ xhtml™ sml:lang="=n" lang="en">)
<head> =
<meta http-equiv="content-type” content="text/html; charset=utf-g"
<titlexView Your Settings</title>
<style type="text/csa">
body {
font-size: x-small:
color: HOOL:
i
</style>
</head> ~
£ | 1] | il

Figure 9.10 By viewing the source code of the page, you can also track how the CSS
values change.

252

Cookies and Sessions

12. Use the customize page to change

) View Your Settings - Mozilla Firefox
Fle Edit “iew History Bookmarks Tools Help your settings and return to thlS SCript

(|j |http:,i,l’\ocalhost:SDDD,iview_settings.php f:? " (Flgure 9.11)

G e Each submission of the form will create
Custonnze Your Sethngs

two new cookies storing the form values,
Eegcl Your Setiingg thereby replacing the existing cookies.

yadda yadda yvadda yadda vadda yadda yvadda yvadda V TipS

vadda yadda vadda yvadda yadda vadda vadda yadda

vadda vadda vadda yadda vadda vadda vadda vadda B The value of a cookie is automatically
encoded when it’s sent and decoded on
being received by the PHP page. The same

is true of values sent by HTML forms.

vadda

Figure 9.11 Change your settings to create new
versions of the page. B Ifyou want the customize.php page to

also display the user’s settings, you need
to take into account the fact that the
cookies aren't available immediately after
they've been set. Instead, you would write
the CSS code using the $_POST values
after the form has been submitted, the
$_COOKIE values upon first arriving at the
page (if the cookies exist), and the default
values otherwise.

253

S3IM00) WOU4 ONIaAVIY

ADDING PARAMETERS TO A COOKIE

Chapter 9

Adding Parameters
to a Cookie

Although passing just the name and value
arguments to the setcookie() function
will suffice for most of your cookie uses, you
ought to be aware of the other arguments
available. The function can take up to five
more parameters, each of which limits the
operation of the cookie:

setcookie(name, value, expiration,
path, domain, secure, httponly);

The expiration argument is used to set a spe-
cific length of time for a cookie to exist. If it
isn't specified, the cookie will continue to be
functional until the user closes their browser.
Normally, you set the expiration time by add-
ing a particular number of minutes or hours
to the current time. This line of code sets the
expiration time of the cookie to be one hour
(60 seconds times 60 minutes) from the cur-
rent moment:

setcookie(name, value, time()+3600);

Because the expiration time will be calcu-
lated as the value of time() plus 3600, this
particular argument isn’'t put in quotes (you
don’t want to literally pass time() + 3600

as the expiration but rather the result of
that calculation).

The path and domain arguments are used
to limit a cookie to a specific folder in a
Web site (the path) or to a specific domain.
Cookies are already specific to a domain,
so this might be used to limit a cookie to a
subdomain, such as forum.example.com.

254

Cookies and Sessions

Using the path option, you could limit a
cookie to exist only while a user is in the user
folder of the domain:

setcookie(name, value, time()+3600,
'/user/");

The secure value dictates that a cookie
should only be sent over a secure HTTPS
connection. A value of 1 indicates that a
secure connection must be used, whereas

0 indicates that a secure connection isn't
necessary. You could ensure a secure cookie
transmission for e-commerce sites:

setcookie(name, value, time()+3600,
v b v b 1);

As with all functions that take arguments,
you must pass all the values in order. In the
preceding example, if you don't want to
specify (or limit) the path and domain, you
use empty quotes. By doing so, you maintain
the proper number of arguments and can
still indicate that a HTTPS connection

is necessary.

The final argument—#ttponly—was added in
PHP 5.2. It can be used to restrict access to
the cookie (for example, preventing a cookie
from being read using JavaScript) but isn't
supported by all browsers.

Let’s add an expiration date to the existing
customize.php page so that the user’s prefer-
ences will remain even after they've closed
their browser and then returned to the

site later.

255

3I00) V O1 SYILINWVIVH ONIAay

ADDING PARAMETERS TO A COOKIE

Chapter 9

To set a cookie’s expiration date:

The site dmcinsights.com wants to set another cookie.

. .) ' You already have 2 cookies from this site.
1. Open customize. php (Scrlpt 91) mn Your ey [use my choice for all cookies from this site
text editor or IDE.

CHldeDatails) CAIIuwforScssmn) (Deny) ﬁ

MName: font size

2. Change the two setcookie() lines to read

as follows (Script 9.3): Content: small
Host: dmcinsights.com
setcookie('font_size', $_POST Path: |)
['font_size'], time()+10000000, L et
T 0);
setcookie(' font_color', $_POST Figure 9.12 If you have your browser set to prompt you

when receiving cookies, you’ll see how the expiration

L' font_color'], time()+10000000, time has been added (compare with Figure 9.6).

N, 0
To make these cookies persist for a
long time (specifically, for a couple of

©3 View Your Settings - Mozilla Firefox

. . . File Edit ‘“iew History Bookmarks Tools Help
months), you set the expiration time to
. (|j |http:,l’;’localhost:SDDD,I’view_settings.php {_\j v|
be 10,000,000 seconds from now. While
youre at it, set the path, domain, and Customize Vour Settings
secure arguments; doing so may improve Reset Vour Settings
the consistency of Sending these cookies vadda yadda yadda yadda vadda vadda vadda vadda vadda yadda
across the various browsers. vadda vadda vadda vadda yvadda vadda vadda vadda yadda yadda
wadda vadda yvadda vadda vadda
Because the expiration date of the cookies

is set months into the future, the user’s Figure 9.13 The new cookie parameters don’t
preferences, which are stored in the adversely affect the functionality of the application.
cookies, will be valid even after the user

has closed and reopened the browser.

Without this expiration date, the user

would see the default font size and color

and have to reassign their preferences

with every new browser session.

3. Save the file, place it in the proper direc-
tory for your PHP-enabled server, and
test it again in your Web browser
(Figures 9.12 and 9.13).

Note that browsers may not adhere to a
cookie's adjusted expiration time when
the cookie is being sent from your own
computer (i.e., from localhost).

256

Cookies and Sessions

Script 9.3 By adding the expiration arguments to the two cookies, you make the cookies persist even after the user
has closed out of and later returned to their browser.

eece =) Script
1 <?php // Script 9.3 - customize.php #2
2
3 // Handle the form if it has been submitted:
4 if (isset($_POST['submitted'])) {
5
6 // Send the cookies:
7 setcookie('font_size', $_POST['font_size'], time()+10000000, '/', '', @);
8 setcookie('font_color', $_POST['font_color'], time()+10000000, '/', '', 0);
9
10 // Message to be printed later:
11 $msg = "<p>Your settings have been entered! Click here to
see them in action.</p>";
12
13 } // End of submitted IF.
14 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
15 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
16 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
17 <head>
18 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
19 <title>Customize Your Settings</title>
20 </head>
21 <body>
22 <?php // If the cookies were sent, print a message.
23 if (isset($msg)) {
24 print $msg;
25 %
26 7>
27
28 <p>Use this form to set your preferences:</p>
29
30 <form action="customize.php" method=
"post">
31 <select name="font_size">
32 <option value="">Font Size</option>
33 <option value="xx-small">xx-small</option>
34 <option value="x-small">x-small</option>
35 <option value="small">small</option>
36 <option value="medium">medium</option>
37 <option value="large">large</option>
38 <option value="x-large">x-large</option>
39 <option value="xx-large">xx-large</option>
40 </select>

(script continues on next page)

257

3I00) V O1 SYILINWVIVH ONIAay

ADDING PARAMETERS TO A COOKIE

Chapter 9

v TipS Script 9.3 continued
eee = Script

B Theres really no rule of thumb for what
kind of expiration date to use with your
cookies. Here are some general guidelines,
though. If the cookie should last as long
as the user browses through the site,
don't set an expiration time. If the cookie
should continue to exist after the user has
closed and reopened th,eir browser, set las </selects
an expiration time that’s months in the | 20 <input type="submit" name="submit"
future. And if the cookie can constitute : value="Set My Preferences” />

a security risk, set an expiration time of |50

an hour or a fraction thereof so that the

cookie doesn't continue to exist too long

|41 <select name="font_color">

:42 <option value="">Font Color</option>
:43 <option value="999">Gray</option>
:44 <option value="0c@">Green</option>
|45 <option value="00f">Blue</option>
:46 <option value="c00">Red</option>

:47 <option value="000">Black</option>

<input type="hidden" name="submitted"
value="true" />

51 </form>

after a user has left their browser. 52
B There can be a big problem with cookie >3 </body>
54 </html>

expirations if the server and the clients
are in different time zones. The expira-
tion time is set based on the server’s time
zone, but the browser may delete the
cookie based on the client’s time zone.
Fortunately, some browsers do automati-
cally correct for this.

W For security purposes, you can set a five-
or ten-minute expiration time on a cookie
and have the cookie re-sent with every
new page the user visits. This way, the
cookie will continue to persist as long as
the user is active but will automatically
die five or ten minutes after the user’s
last action.

B Setting the cookie’s path to ' /' makes
the cookie accessible within an entire
Web site.

258

Cookies and Sessions

Deleting a Cookie

The final thing to understand about using
cookies is how to delete one. Although a
cookie automatically expires when the user’s
browser is closed or when the expiration
date/time is met, sometimes you'll want

to manually delete the cookie as well. For
example, Web sites that have registered users
and login capabilities generally delete any
cookies when the user logs out.

The setcookie() function can take up to
seven arguments, but only one is required—
the name. If you send a cookie that consists
of a name without a value, it will have the
same effect as deleting the existing cookie of
the same name. For example, to create the
cookie username, you use this line:

setcookie('username', 'Larry');

To delete the username cookie, you code
setcookie('username', '');

or

setcookie('username', FALSE);

As an added precaution, you can also set an
expiration date that’s in the past:

setcookie('username', "', time() - 600);

The only caveat when it comes to deleting a
cookie is that you must use the same argu-
ment values that were used to set the cookie
in the first place (aside from the value and
expiration). For example, if you set a cookie
while providing a domain value, you must also
provide that value when deleting the cookie:

setcookie('user', 'larry', time() +
3600, '', 'forums.example.com');
setcookie('user', "', time() - 600, '',

'forums.example.com');

To demonstrate this feature, let's add a reset
page to the Web application that will destroy
the sent cookies so that the user’s preferences
are forgotten.

259

iNIO0) V ONIL3ITAQ

DELETING A COOKIE

Chapter 9

To delete a cookie:

1. Begin a new PHP script in your text editor
or IDE (Script 9.4):

<?php // Script 9.4 - reset.php

2. Delete the existing cookies by sending
blank cookies and complete the PHP code:
setcookie('font_size', "', time() -

600, '/', '", @);
setcookie('font_color', "', time() -
600, '/', '", @);
7>
These two lines send cookies named
Jfont_size and font_color, each with no
value and an expiration time of ten
minutes ago. As you did when creating
cookies, you must call the setcookie()
function before anything else is sent to
the Web browser.

Script 9.4 To reset all the cookie values, send blank cookies with the same names as the existing cookies.
eoceoe =) Script

1 <?php // Script 9.4 - reset.php

2

3 // Delete the cookies:

4 setcookie('font_size', "', time() - 600, '/', '', @);

5 setcookie('font_color', '', time() - 600, '/', '', 0);

6

7 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

8 "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

9 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

10 <head>

11 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

12 <title>Reset Your Settings</title>

13 </head>

14 <body>

15

16 <p>Your settings have been reset! Click here to go back to the
main page.</p>

17

18 </body>

19 </html>

260

Cookies and Sessions

The site dmcinsights.com wants to modify an existing cookie. 3. Create the HTML head:

| 0 usemy choefor al cooie rom ohis see <IDOCTYPE html PUBLIC "-//W3C//DTD
i XHTML 1.0 Transitional//EN"
= Qowtoresson) € oery) (D) "http://www.w3.org/TR/xhtml1/DTD/
o e xhtmll-transitional.dtd">

8 ot o <html xmlns="http://www.w3.org/1999/
e xhtml® xml:lang="en” lang="en">

<head>

Figure 9.14 When the setcookie() function is used <meta http-equiv="Content-Type"
with a name but no value, the existing cookie of that "

name is deleted. The expiration date in the past also content="text/html;

guarantees proper destruction of the existing cookie. charset=utf-8"/>

<title>Reset Your Settings</title>

©) Reset Your Settings - Mozilla Firefox |Z||E”z| </head>
File Edit ‘“iew History Bookmarks Tools Help 4. Addthe page,s bOdy
I‘ ﬁ |http:,l’,l’localhost:SDDD,l’reset.php ﬁ v| <b0dy>
A
Tour settings hawve been reset! Click here to go | <p>Your settings have been reset!
back to the main page. Click <a href="view_settings.

£

php">here to go back to the

Figure 9.15 The reset page sends two blank main page.</p>
cookies and then displays this message.

</body>
— The body of this script merely tells the
© View Your Settings - Mozilla Firefox [[[B](X] user that their settings have been reset.
Ho T e hEER) Eewels Kb Alink is then provided to return to the
l: |:] |http:,l’,l’localhost:SDDD,l’view_settings.php ‘ﬁf’ '| main page.
Customize Vour Settings 5. Complete the HTML:
</html>

Beset Tour Settings
6. Save the page as reset.php, place it in the

vadda yadda yadda vadda vadda yadda yadda :
proper directory for your PHP-enabled

vadda vadda yadda vadda vadda yadda yadda

vadda yadda vadda yadda yadda yadda yadda server, and test it in your Web browser
wadda yadda vadda vadda (Figures 9.14,9.15,and 9.16).
To test this page, either click the appropri-
Figure 9.16 If the user has used the reset page, ate link in view_settings.php (Script 9.2)
PHP destroys the cookies (Figure 9.14), which or just go to this page directly.
resets the main page to its default formatting.
v Tips
B Justas creating a cookie doesn't take effect
B Just as creating cookies has mixed results until another page is loaded, deleting a
using different browsers, the same cookie doesn't take effect until another
applies to deleting them. Test your scripts page. This is to say that you can delete a
on many browsers and play with the cookie on a page but still access that cookie
setcookie() settings to ensure the best on it (because the cookie was received by
all-around compatibility. the page before the delete cookie was sent).

261

iNIO0) V ONIL3ITAQ

WHAT ARE SESSIONS?

Chapter 9

What Are Sessions?

A session, like a cookie, provides a way for
you to track data for a user over a series of
pages. The difference between the two—and
this is significant—is that a cookie stores the
data on the client side (in the Web browser),
whereas the session data is stored on the
server. Because of this difference, sessions
have numerous benefits over cookies:

@ Sessions are generally more secure,
because the data isn't transmitted back
and forth between the client and server
repeatedly.

¢ Sessions let you store more information
than you can in a cookie.

& Sessions can be made to work even if
the user doesn't accept cookies in their
browser.

When you start a session, PHP generates a
random session ID, a reference to that par-
ticular session and its stored data. By default,
this session ID is sent to the Web browser

as a cookie (Figure 9.17). Subsequent PHP
pages will use this cookie to retrieve the ses-
sion ID and access the session information.

Over the next few pages, you'll see just how
easy sessions are to work with in PHP.

The site localhost wants to set another cookie.
You already have 2 cookies from this site.

/. [use my choice for all cookies from this site
[S————]

(HIdEDEtailS) (AlluwforSessmn) (Deny) m

Mame: PHPSESSID
Content: bdulds9sldvkl6s206590mblge
Host: localhost
Path: /
Send For: Any type of connection
Expires: at end of ;ess\un|

Figure 9.17 A session cookie being sent to the Web
browser.

Choosing Between Sessions
and Cookies

Sessions have many benefits over cookies,
but there are still reasons why you would
use the latter. Cookies have these advan-
tages over sessions:

¢ Marginally easier to create and retrieve

¢ Require slightly less work from the
server

¢ Normally persist over a longer period
of time

As arule of thumb, you should use cookies
in situations where security is less of an
issue and only a minimum of data is being
stored. If security’s a concern and there
will be oodles of information to remember,
you'e best off with sessions. Understand,
though, that using sessions may require a
little more effort in writing your scripts.

262

Cookies and Sessions

Creating a Session

Creating, accessing, or deleting a session
begins with the session_start() function.
This function will attempt to send a cookie
the first time a session is started (see Figure
9.17), so it absolutely must be called prior

to any HTML or white space being sent to
the Web browser. Therefore, on pages that
use sessions, you should call the session_
start() function as one of the very first lines
in your script.

The first time a session is started, a random
session ID is generated and a cookie is
sent to the Web browser with a name of
PHPSESSID (the session name) and a value
like 4bcc48dc87cb4b54d63f99da23fb41el.

Once the session has been started, you can
record data to it by assigning values to the
$_SESSION array:

$_SESSION['first_name'] = 'Marc';
$_SESSION['age'] = 35;

Each time you do this, PHP writes that data
to a temporary file stored on the server. To
demonstrate, you'll rewrite the login script
from Chapter 8, this time storing the email
address in a session.

263

NOISS3S V ONILYIY)

CREATING A SESSION

Chapter 9

To create a session:

1.

2.

Open login.php (Script 8.13) in your text
editor or IDE.

Before the ob_end_clean() line, add the

following (Script 9.5):

session_start();

$_SESSION['email'] = $_POST
["email'];

$_SESSION['loggedin'] = time();

Script 9.5 This script stores two values in the session and then redirects the user to another page, where the
session values are accessed.

eceoe £ Seript

1 <?php // Script 9.5 - login.php #3

2 /* This page lets people log into the site (almost!). */

3

4 // Set the page title and include the header file:

5 define('TITLE', 'Login');

6 require('templates/header.html');

7

8 // Print some introductory text:

9 print '<hl>Login Form</hl>

10 <p>Users who are logged in can take advantage of certain features like this, that, and the

other thing.</p>";

11

12 // Check if the form has been submitted:

13 if (isset($_POST['submitted'])) {

14

15 // Handle the form:

16 if C (lempty($_POST['email'])) && (!empty($_POST['password']))) {

17

18 if ((strtolower($_POST['email']) == 'me@example.com') && ($_POST['password'] ==
'testpass')) { // Correct!

19

20 // Do session stuff:

21 session_start();

22 $_SESSION['email'] = $_POST['email'];

23 $_SESSION['loggedin'] = time();

24

25 // Redirect the user to the welcome page!

26 ob_end_clean(); // Destroy the buffer!

27 header ('Location: welcome.php');

28 exit();

29

(script continues on next page)

264

Cookies and Sessions

To store values in a session, begin by
calling the session_start() function.
Although you normally have to call this
function first thing in your script (because
it may attempt to send a cookie), that’s
not required here because the header file
for this script begins output buffering (see
Chapter 8).

The session first stores the user’s submit-
ted email address in $_SESSION['email'].
Then the time the user logged in is assigned
to $_SESSION['loggedin']. This is deter-
mined by calling the time() function,
which returns the number of seconds that
have elapsed since the epoch (midnight
on January 1, 1970).

continues on next page

Script 9.5 continued

eee = Script

30 } else { // Incorrect!

31

32 print '<p>The submitted email address and password do not match those on file!
Go back and try again.</p>";

33

34 }

35

36 } else { // Forgot a field.

37

38 print '<p>Please make sure you enter both an email address and a password!
Go back
and try again.</p>";

39

40 }

41

42 } else { // Display the form.

43

44 print '<form action="login.php" method="post">

45 <p>Email Address: <input type="text" name="email" size="20" /></p>

46 <p>Password: <input type="password" name="password" size="20" /></p>

47 <p><input type="submit" name="submit" value="Log In!" /></p>

48 <input type="hidden" name="submitted" value="true" />

49 </form>";

50

51

52

53 require('templates/footer.html'); // Need the footer.

54 7>

265

NOISS3S V ONILYIY)

CREATING A SESSION

Chapter 9

3.

Save the file as login.php and place it in SO0 Login
the appropriate directory on your PHP- Losin Form

Tlsers wha are logged in can take advantage of

enabled Computer. certan features like thas, thut, and the other thing,

Emul Address;
This script should be placed in the same R

directory used in Chapter 8, as it requires D]
some of those other files.

Navigation
Home
Dotk
Logm

Hegiier

1154 pm Sunday
October 26

Load the form in your Web browser to

Figure 9.18 The login form.
ensure that it has no errors (Figure 9.18).

The welcome page needs to be updated
prior to actually logging in.

v Tips

The php . ini configuration file includes
many session-related settings that you
can tinker with if you have administra-
tive-level control over your server. Open
the php.ini file in a text editor and see
the manual for more information.

You can also alter some of the session set-
tings using the ini_set() function.

The session_name() function lets you
change the name of the session (instead
of using the default PHPSESSID). It must
be used before every session_start()
call, like so:

session_name('YourVisit');

session_start();

The session_set_cookie_params()
function alters the session cookie settings,
like the expiration time, the path, and

the domain.

The constant SID stores a string in the
format name=ID. For example:

PHPSESSID=4bcc48dc87cb4b54d63f99da2
3fb4lel

You can store any type of value—number,
string, array, or object—or any combina-
tion thereof in your sessions.

266

Cookies and Sessions

Script 9.6 You can access stored session values
using the $_SESSION array, as long as your script uses
session_start() first.

200 2 seript

1 <?php // Script 9.6 - welcome.php #2

2 /* This is the welcome page. The user is
redirected here

after they successfully log in. */

// Need the session:
session_start();

o N O Ul W

// Set the page title and include the

header file:

9 define('TITLE', 'Welcome to the Elliott
Smith Fan Club!');

10 require('templates/header.html');

11

12 // Print a greeting:

13 print "<hl>Welcome to the Elliott
Smith Fan Club, ' . $_SESSION['email'] .
'1</h1>";

14

15 // Print how long they've been logged in:

16 date_default_timezone_set('America/New_
York');

17 print '<p>You have been logged in since:
' . date('g:i a', $_SESSION['loggedin'])
. '</p>

18

19 // Make a logout link:

20 print '<p>Click here
to logout.</p>";

21

22 require('templates/footer.html');
// Need the footer.

23 7>

Accessing Session
Variables

Now that you've stored values in a session,
you need to learn how to access them. You
must begin with the session_start() func-
tion, whether youTe creating a new session
or accessing an existing one. This function
indicates to PHP that this particular script
will use sessions.

From there it's simply a matter of referenc-
ing the $_SESSION variable as you would any
other array. With this in mind, you'll write
another welcome page—similar to the one
from Chapter 8—that accesses the stored
email and loggedin values.

To access session variables:

1. Create a new PHP document in your text
editor or IDE (Script 9.6):

<?php // Script 9.6 - welcome.php

2. Begin the session:
session_start();

Even when youe accessing session val-
ues, you should call the session_start()
function before any data is sent to the
‘Web browser.

3. Define a page title, and include the
HTML header:

define('TITLE', '"Welcome to the
Elliott Smith Fan Club!");

require('templates/header.html');

Because this page uses the same template
system developed in Chapter 8, it also
uses the same header system.

4. Greet the user by email address:

print '<hl>Welcome to the
Elliott Smith Fan Club, '
$_SESSION['email'] . '!</h1>";

continues on next page

267

S3719VIdVA NOISS3S 9NISS3IIIY

ACCESSING SESSION VARIABLES

Chapter 9

To access the stored user’s address, refer
to $_SESSION['email']. Here, that valueis
concatenated to the rest of the string that’s
being printed out. You could also write:

print "<hl>Welcome to the
Elliott Smith Fan Club,
{$_SESSION['email']}!</h1>";

Show how long the user has been
logged in:
date_default_timezone_set('America/
New_York');
print '<p>You have been logged
in since: ' . date('g:i a',
$_SESSION['loggedin']) . '</p>';
To show how long the user has been logged
in, refer to the $_SESSION['loggedin']
variable. By using this as the second argu-
ment sent to the date() function, along
with the appropriate formatting param-
eters, you make the PHP script create text
like 11:22 pm.

Before using the date() function, how-
ever, you need to set the default time zone
(this is also discussed in Chapter 8). If you
want, after setting the time zone here, you
can remove the use of the same function
from the footer file.

Complete the content:

print '<p>Click
here to logout.</p>";

The next script will provide logout func-

tionality, so a link to it is added here.

Include the HTML footer, and complete
the HTML page:

require('templates/footer.html');

7>

Save the file as welcome.php, place it

in the proper directory for your PHP-
enabled server, and test it (starting
with login.php, Script 9.5) in your Web
browser (Figure 9.19).

800 Welcome to the Elliott Smith Fan Club! =
‘Welcome to the Elliott Smith Fan Club, Navigation
me@example.com!

Home
You have been logged in since: 11:55 pm Discography
Login
Click here to logout. Register

12:00 am Monday
October 27

Figure 9.19 After successfully logging in (using me@
example.com and testpass in the form), the user is
redirected to this page, which greets them using the
session values.

v Tip
B To see whether a particular session vari-
able exists, use isset($_SESSION['var'])

as you would to check if any other vari-
able is set.

268

Cookies and Sessions

Script 9.7 Deleting a session is a three-step process:
start the session, delete the variable, and destroy the
session data.

200 2 seript

1 <?php // Script 9.7 - logout.php
2 /* This is the logout page. It destroys
the session information. */

// Need the session:
session_start();

// Delete the session variable:
unset($_SESSION);

10 // Destroy the session data:
11 session_destroy();

13 // Define a page title and include the
header:

14 define('TITLE', 'Logout');

15 require('templates/header.html');

16

17 7>

18

19 <hl>Welcome to the Elliott Smith Fan
Club!</h1>

20 <p>You are now logged out.</p>

21 <p>Thank you for using this site. We hope
that you liked it.

22 Blah, blah, blah...

23 Blah, blah, blah...</p>

24

25 <?php require ('templates/footer.html'); ?>

Deleting a Session

It's important to know how to delete a session,
just as it's important to know how to delete a
cookie: Sometimes you'll want to get rid of the
data you've stored. Session data exists in two
areas, so you'll need to delete both. But first
you must begin with the session_start()
function, as always:

session_start();

Then, you delete the session variables by
unsetting the $_SESSION array:

unset($_SESSION);

Finally, you remove the session data from the
server (where it’s stored in temporary files).
To do this, use

session_destroy();

With that in mind, let’s write logout . php,
which will delete the session, effectively
logging out the user.

To delete a session:

1. Start a new PHP script in your text editor
or IDE (Script 9.7).

<?php // Script 9.7 - logout.php

2. Begin the session:
session_start();

Remember that you can't delete a session
until you activate the session using this
function.

3. Delete the session variable:
unset($_SESSION);

You can use the unset() function to
delete any variable, including $_SESSION.
Doing so trashes any stored values.

4. Destroy the session data on the server:
session_destroy();

This step tells PHP to remove the actual
session files on the server.

continues on next page

269

NOISS3S V ONIL3T13Q

DELETING A SESSION

Chapter 9

5.

Include the HTML header, and complete
this PHP section:

define('TITLE', 'Logout');
require('templates/header.html');

7>

Make the page content:

<hl>Welcome to the Elliott Smith Fan
Club!</h1>

<p>You are now logged out.</p>

<p>Thank you for using this site. We
hope that you liked it.

Blah, blah, blah...

Blah, blah, blah...</p>

Include the HTML footer:

<?php require ('templates/footer.
html'); 7>

Save the file as Logout . php, place it
in the proper directory for your PHP-
enabled server, and test it in your
Web browser by clicking the link in
welcome.php (Figure 9.20).

v Tips

To delete an individual session value, use
unset($_SESSION['var']);

The PHP module on the server will
automatically perform garbage collection
based on settings in its configuration.
PHP uses garbage collection to manually
delete session files from the server, with
the assumption that theyre no longer
needed.

You can have PHP use sessions without
cookies, in which case the session ID
must be appended to every link in your
site (so that each page receives the ses-
sion ID). If you enable the enable_trans_
side setting (in the php.ini file), PHP will
handle this for you.

800 Logout
‘Welcome to the Elliott Smith Fan Club!
You are now logged out.

Thank you for using this site. We
hope that you liked it.
Blah, blah, blah... Blah, blah, blah...

Navigation

Home
Discography
Login
Register

12:01 am Monday
October 27

Figure 9.20 The logout page destroys the session data.

270

CREATING FUNCTIONS

Throughout this book, you've used dozens of
functions that provide much-needed func-
tionality, such as date(), setcookie(), and
number_format(). Whereas those functions
have already been defined by PHP, here you'll
be creating your own. However, once created,
functions you've written and built-in PHP
functions are used in the same manner.

Creating functions can save you oodles of
time over the course of your programming
life. In fact, they constitute a strong step in
the process of creating Web applications and
building a solid library of PHP code to use in
future projects.

In this chapter, you'll see how to write your
own functions that perform specific tasks.
After that, you'll learn how to pass informa-
tion to the function, use default values in a
function, and have your function return a
value. You'll also learn how functions and
variables work together.

271

SNOILONN{ ONILVIY)

CREATING AND USING SIMPLE FUNCTIONS

Chapter 10

Creating and Using Simple
Functions

As you program, you'll discover that you use
certain sections of code frequently, either
within a single script or over the course of
several scripts. Placing these routines into a
self-defined function can save you time and
make your programming easier, especially as
your Web sites become more complex. Once
you create a function, the actions of that
function take place each time the function
is called, just as print() sends text to the
browser with each use.

The syntax to create a user-defined function is

function function_name () {
statement(s);

}
For example:

function whatever() {
print 'whatever';

}

You can use roughly the same naming con-
ventions for functions as you do for variables,
just without the initial dollar sign. Second

to that is the suggestion that you create
meaningful function names, just as you
ought to write representative variable names
(create_header would be a better function
name than functionl). Remember not to use
spaces, though—doing so constitutes two
separate words for the function name, which
will result in error messages (the underscore
is alogical replacement for the space). Unlike
variables, function names in PHP are not
case-sensitive, but you should still stick with a
consistent naming scheme.

272

Creating Functions

Any valid PHP code can go within the
statement(s) area of the function, includ-

ing calls to other functions. There is also no
limit on the number of statements a function
contains; but make sure each statement ends
with a semicolon, just as you would within
the rest of the PHP script.

The formatting of a function isn't important
as long as the requisite elements are there.
These elements include the word function,
the function’s name, the opening and closing
parentheses, the opening and closing braces,
and the statement(s). It's conventional to
indent a function’s statement(s) from the
previous line, for clarity’s sake, as you would
with aloop or conditional. In any case, select
a format style that you like (which is both
syntactically correct and logically sound) and
stick to it.

You call (or invoke) the function by referring
to it just as you do any built-in function. The
line of code

whatever();

will cause the statement part of the pre-
viously defined function—the print()
statement—to be executed.

Let’s begin by creating a function that gener-
ates month, day, and year pull-down menus
for a form.

273

SNOILINNS FTdWIS ONIS) ANV ONILVIY)

CREATING AND USING SIMPLE FUNCTIONS

Chapter 10

To create and call a basic function:

1. Start anew PHP document in your text
editor or IDE (Script 10.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Date Menus</title>
</head>
<body>

Script 10.1 The function defined in this script creates three pull-down menus for a form.
8o = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Date Menus</title>

7 </head>

8 <body>

9 <?php // Script 10.1 - menusl.php

10 /* This script defines and calls a function. */

11

12 // This function makes three pull-down menus for the months, days, and years.

13 function make_date_menus() {

14

15 // Array to store the months:

16 $months = array (1 => 'January', 'February', 'March', 'April', 'May', 'June', 'July',
'August', 'September', 'October', 'November', 'December');

17

18 // Make the month pull-down menu:

19 print '<select name="month">";

20 foreach ($months as $key => $value) {

21 print "\n<option value=\"$key\">$value</option>";

22 }

23 print '</select>';

24

(script continues on next page)

274

Creating Functions

Script 10.1 continued

eeceoe = Seript
| 25 // Make the day pull-down menu:
:26 print '<select name="day">";
:27 for ($day = 1; $day <= 31; $day++) {
| 28 print "\n<option value=\"$day\">
: $day</option>";
| 29 }
:30 print '</select>"';
:31
|32 // Make the year pull-down menu:
:33 print '<select name="year">";
:34 $start_year = date('Y');
|35 for ($y = $start_year; $y <= ($start_
: year + 10); $y++) {
:36 print "\n<option value=\"$y\">$y
| </option>";

37 }

38 print '</select>';

39

40 } // End of make_date_menus() function.
41

42 // Make the form:

43 print '<form action="" method="post">";
44 make_date_menus();

45 print '</form>';

46

47 7>

48 </body>

49 </html>

. Begin the PHP section:

<?php // Script 10.1 - menusl.php

. Start defining a function:

function make_date_menus() {

The name of this function is make_date_
menus, which is both descriptive of what
the function does and easy to remember.

. Create the month pull-down menu:

$months = array (1 => 'January',
'February', 'March', "April',
'May', "June', 'July', 'August',
'September', 'October’,
'November', 'December');

print '<select name="month">";
foreach ($months as $key => $value) {
print "\n<option value=\"$key\">
$value</option>";

}

print '</select>";

To generate a list of months, first create
an array of the month names, indexed
numerically beginning at 1 for January.
‘When you specify the index for the first
array element, the others will follow
sequentially without the need to be
explicit in naming them.

After the array has been created, the
initial select tag is printed out. Then, a
foreach loop runs through the $months
array. For each element in the array, the
HTML option tag is printed, using the
array key (the numbers 1 through 12)

as the option value and the array value
(January through December) as the
displayed text. Each line is also preceded
by a newline character (\n) so that each
option ends up on its own line within the
HTML source.

continues on next page

275

SNOILINNS FTdWIS ONIS) ANV ONILVIY)

CREATING AND USING SIMPLE FUNCTIONS

Chapter 10

5.

Create the day pull-down menu:

print '<select name="day">";

for ($day = 1; $day <= 31; $day++) {
print "\n<option value=\"$day\">

$day</option>";

}

print '</select>';

The day menu is a lot easier to create. To

do so, you use a simple for loop, running
through the numbers 1 through 31.

Create the year pull-down menu:

print '<select name="year">"';
$start_year = date ('Y');
for ($y = $start_year; $y <=
($start_year + 10); $y++) {
print "\n<option value=\"$y\">$y
</option>";

}
print '</select>"';

To create the year pull-down menu, you
start by using the date() function to get
the current year. Then you create options
for this year plus the next 10, using a for
loop.

Close the function:

} // End of make_date_menus()
function.

When you'e creating functions, it's easy
to create parse errors by forgetting the
closing curly brace. You may want to add
comments to help you remember this
final step.

276

Creating Functions

800

Date Menus

January

i

2009

| 2010

2011
2012
2013
2014
2015
2016
2017
2018
2019

Figure 10.1 These pull-down menus
were created by a user-defined

function. This technique makes your

code more portable without having

an effect on the end result.

10

. Make the form tags, and call the function:

D

print '<form action="" method=
"post">";

make_date_menus();

print '</form>"';

The print() statements are used to cre-
ate the HTML form tags. Without those,
the date pull-down menus won't appear
properly in your script.

Once you've created your function, you
simply have to call it by name (being
careful to use the exact spelling) to make
the function work. Be sure to include the
parentheses as well.

Complete the PHP and HTML:
7>

</body>

</html>

Save the file as menus1.php, place it

in the proper directory for your PHP-
enabled server, and run it in your Web
browser (Figure 10.1).

277

SNOILINNS FTdWIS ONIS) ANV ONILVIY)

CREATING AND USING SIMPLE FUNCTIONS

Chapter 10

v Tips

W Ifyousee a Call to undefined function:
some_ function... error message, it means
you'e trying to call a function that doesn’t
exist. Recheck your spelling in both the
definition of the function and its usage to
see if you made a mistake.

B The function_exists() function returns
TRUE or FALSE based on whether a func-
tion exists in PHP. This applies to both
user-defined functions and those that can
be built into PHP:

if (function_exists('some_
function')) { ..

B Although you aren’t required in PHP to
define your functions before you call
them, it's recommended that you habitu-
ally define your functions at the beginning
of a script. The benefit of doing so is that
it helps to separate the function defini-
tion code from the main workings of the
script.

B Some people prefer this syntax for laying
out their functions:

function function_name()

{

statement(s);

}

B User-defined functions add extra memory
requirements to your PHP scripts, so
you should be judicious in using them. If
you find that your function merely calls
another PHP function or has but one line
of code, it’s probably not the best use of
this capability.

278

Creating Functions

800 Mozilla Firefox =)

‘Warning: Missing argument | for make_full_name), called in /Users/larryullman
/Sites/test.php on line 5 and defined in /Users/larryullman/Sites/test.php on line 2

‘Warning: Missing argument 2 for make_full_name(), called in /Users/larryullman
/Sites/test.php on line 5 and defined in /Users/larryullman/Sites/test.php on line 2

Notice: Undefined variable: first in /Users/larryullman/Sites/test.php on line 3

Notice: Undefined variable: last in /Users/larryullman/Sites/test.php on line 3

Figure 10.2 As with any function (user-defined or built
into PHP), passing an incorrect number of arguments
when calling it yields error messages.

Creating and Calling
Functions That Take
Arguments

Although being able to create a simple func-
tion is useful, writing one that takes input
and does something with that input is even
better. The input a function takes is called an
argument (or a parameter). This is a concept
you've seen before: the sort() function takes
an array as an argument, which the function
then sorts.

The syntax for writing functions that take
arguments is as follows:

function function_name($argl,
$arg2, .D{
statement(s);

}

The function’s arguments are in the form of
variables that are assigned the values sent to
the function when you call it. The variables
are defined using the same naming rules as
any other variable in PHP:

function make_full_name($first, $last) {
print $first . ' ' . $last;
}

Functions that take input are called much
like those that don't—you just need to
remember to pass along the necessary values
(Figure 10.2). You can do this either by pass-
ing variables,

make_full_name($fn, $1n);

or by sending literal values, as in
make_full_name('Larry', 'Ullman');
or some combination thereof:
make_full_name('Larry', $1n);

continues on next page

279

SNOILIONNZ 9NITTIV) ANV SNILVIY)

CREATING AND CALLING FUNCTIONS

Chapter 10

The important thing to note is that argu-
ments are passed quite literally: The first vari-
able in the function definition is assigned the
first value in the call line, the second function
variable is assigned the second call value,
and so forth. Functions aren’t smart enough
to intuitively understand how you meant the
values to be associated. This is also true if you
fail to pass a value, in which case the function
will assume that value is null (null isn't the
mathematical 0, which is actually a value, but
closer to the idea of the word nothing). The
same thing applies if a function takes four
arguments and you pass three—the fourth
will be null, which may create an error.

To demonstrate functions that take argu-
ments, you'll rewrite the make_date_menus()
function so that it takes a start year value
and a number for how many years should

be displayed. Then the function can easily
create different year pull-down menus for
different situations.

To create and call a function that takes
an argument:

1. Openmenusl.php (Script 10.1) in your
text editor or IDE, if it is not already.

2. Change the function definition line (line
13in Script 10.1) so that it takes two argu-
ments (Script 10.2):
function make_date_menus($start_year,

$num_years) {
This function now takes two arguments,
which will be assigned to the $start_year
and $num_years variables.

3. Delete the $start_year =date('Y");
code (line 34 of the original script).

Because the start year is being passed to
the function, the function no longer needs
to calculate this value for itself.

continues on page 282

280

Creating Functions

Script 10.2 This version of the make_date_menus() function takes two arguments, dictating when the dates in the
year pull-down menu begin and end.

ece
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Date Menus</title>
7 </head>
8 <body>
9 <?php // Script 10.2 - menus2.php
10 /* This script defines and calls a function that takes arguments. */
11
12 // This function makes three pull-down menus for the months, days, and years.
13 // This function requires two arguments be passed to it.
14 function make_date_menus($start_year, $num_years) {
15
16 // Array to store the months:
17 $months = array (1 => 'January', 'February', 'March', 'April', 'May', 'June', 'July',

'August’, 'September', 'October', 'November', 'December');
18
19 // Make the month pull-down menu:
20 print '<select name="month">";
21 foreach ($months as $key => $value) {
22 print "\n<option value=\"$key\">$value</option>";
23 }
24 print '</select>"';
25
26 // Make the day pull-down menu:
27 print '<select name="day">";
28 for ($day = 1; $day <= 31; $day++) {
29 print "\n<option value=\"$day\">

$day</option>";
30 }
31 print '</select>"';
32
33 // Make the year pull-down menu:
34 print '<select name="year">";
35 for ($y = $start_year; $y <= ($start_year + $num_years); $y++) {
36 print "\n<option value=\"$y\">$y
</option>";

37 }
38 print '</select>';
39
40 } // End of make_date_menus() function.
41
42 // Make the form:
43 print '<form action="" method="post">";
44 make_date_menus(2009, 15);
45 print '</form>';
46
47 7>
48 </body>
49 </html>

281

SNOILIONNZ 9NITTIV) ANV SNILVIY)

CREATING AND CALLING FUNCTIONS

Chapter 10

4.

Rewrite the year for loop to use the
passed arguments:
for ($y = $start_year; $y <=
($start_year + $num_years); $y++) {
To use the received values, you just need to
change the second part of the for loop (the
condition the for loop checks against).
Instead of having the loop execute 10
times, it executes for $num_years times.

Change the function call so that it passes
two arguments:

make_date_menus(2009, 15);

The function now needs to be passed two
values. The first value is the first year to
display in the pull-down menu. The sec-
ond value is how many years to display.
Because these are both number values,
they don't need to be placed within
quotation marks.

Save your script as menus2. php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 10.3).

If you want, change the arguments in your
function call to create a different year
pull-down menu (Figure 10.4).

v Tips

You could also use the date('Y") call
outside of the function to have the pull-
down menu automatically begin with the
current year. This is what you could do:

make_date_menus(date('Y'), 20);

You can define as many functions as
you want, not just one per script as the
examples in this chapter portray.

There are no limits on how many argu-
ments a function can take.

Once you've defined your own functions
like this, you can place them in an exter-
nal file and then require that file when
you need access to the functions.

® OO Date Menus =

January T 2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Figure 10.3 A slightly different
variation on the original function
(see Script 10.1 and Figure 10.1)
lets you create different pull-down
menus with ease.

® OO Date Menus (=]

January

A

Figure 10.4 Minor changes to one
line of code generate different
results (compare with Figure 10.3).

282

Creating Functions

Hello, world!Hello, Sarah!

® O O Mozilla Firefox

Figure 10.5 Calling the function
without any arguments uses the
default value (the first greeting);
calling it with an argument
provided means that value will be
used instead (the second).

Setting Default
Argument Values

PHP allows functions to have default argu-
ment values. To do so, just assign a value to
the argument in the function definition:

function greeting($who = 'world') {
print "Hello, $who!";
}

Such a function will use the preset values
unless it receives a value that then over-
writes the default. In other words, by setting
a default value for an argument, you render
that particular argument optional when
calling the function. Youd set an arguments
default value if you wanted to assume a cer-
tain value but still allow for other possibilities
(Figure 10.5):

greeting();
greeting('Sarah');

The default arguments should always be writ-
ten after the other standard arguments (those
without defaults). This is because PHP directly
assigns values to arguments in the order
they're received from the call line. Thus, it isn't
possible to omit a value for the first argument
but include one for the second (this would
mean you sent one value, and it would auto-
matically be equated to the first argument, not
the second). For example, suppose you have:

function calculate_total($qty, $price =
20.00, $tax = 0.06) {...

If you call the function with the line
calculate_total(3, 0.07);

with the intention of setting $qty to 3, leaving
$price at 20.00, and changing the $tax to
0.07, there will be problems. The end result
will be that $qty is set to 3, $price is set to
0.07, and $tax remains at 0.06, which isn't

continues on next page

283

SINTVA LNJWNOYIY 11nVv43Q ONILLIS

SETTING DEFAULT ARGUMENT VALUES

Chapter 10

the desired outcome. The proper way to
achieve that affect would be to code

calculate_total(3, 20.00, 0.07);

Let’s rework the make_date_menus() function
to incorporate the notion of setting default
argument values.

To write a function that uses default
values:

1. Openmenus2.php (Script 10.2) in your
text editor or IDE, if it isn't open already.

2. Add a default value to the $num_years
variable in the make_date_menus()
function (Script 10.3):
function make_date_menus($start_

year, $num_years = 10) {
You've now set the value of $num_years to
be 10 as a default. If two arguments are
sent to the function, then $num_years will
be set to the second value instead of the
default, working as it did previously.

® OO Date Menus (=]

January 1 2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Figure 10.6 Now the script uses
a default value for one function
argument. This doesn’t affect the
end result but does make the
function easier to use.

Script 10.3 The function still takes two arguments, but only one of them is required. If no $num_years value is

passed to the function, its value will be 10.

eoceoe = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Date Menus</title>

7 </head>

8 <body>

9 <?php // Script 10.3 - menus3.php

10 /* This script defines and calls a function that takes arguments. */

11

12 // This function makes three pull-down menus for the months, days, and years.

13 // This function requires two arguments be passed to it.

14 // The second argument has a default value of 10.

15 function make_date_menus($start_year, $num_years = 10) {

16

17 // Array to store the months:

18 $months = array (1 => 'January', 'February', 'March', 'April', 'May', 'June', 'July’,
'August', 'September', 'October', 'November', 'December');

19

(script continues on next page)

284

Creating Functions

Script 10.3 continued

eceoe 51 Seript

20 // Make the month pull-down menu:

21 print '<select name="month">";

22 foreach ($months as $key => $value) {

23 print "\n<option value=\"$key\">
$value</option>";

24 1

25 print '</select>';

26

27 // Make the day pull-down menu:

28 print '<select name="day">";

29 for ($day = 1; $day <= 31; $day++) {

30 print "\n<option value=\"$day\">
$day</option>";

31 }

32 print '</select>"';

33

34 // Make the year pull-down menu:

35 print '<select name="year">';

36 for ($y = $start_year; $y <= ($start_

year + $num_years); $y++) {

37 print "\n<option value=\"$y\">$y
</option>";

38 }

39 print '</select>';

40

42

41 } // End of make_date_menus() function.

43 // Make the form:

44 print '<form action="" method="post">';
45 make_date_menus(2009, 15);

46 print '</form>';

47
48 7>
49 </body>
50 </html>
® O O Date Menus ()
January 1 2009
Figure 10.7
ot Passing only one
2011
2012 parameter to the
2013 function causes
2014 :
Siite it to use the
2016 default number
2017 of years to print
2018
5614 (the start year
| plus ten more).

3.

5.

Save your script as menus3. php, place it in
the proper directory of your PHP-enabled
server, and test it in your Web browser
(Figure 10.6).

If you want, change your function call
toread

make_date_menus(2009);

Calling the function with this code works
without a problem, only this time 10
more years are displayed in the pull-down
menu instead of 15.

Save the script and run it again (Figure 10.7).

v Tips

To pass no value to a function for a par-
ticular argument, use an empty string ("' ")
or the word NULL (without quotes). Either
of these values will override the default
value, if one is established.

As mentioned way back in Chapter 1,
“Getting Started with PHP,” the PHP man-
ual marks optional function arguments
using square brackets. For example, when
you use the number_format() function,
the number of decimals to round to is
optional:
string number_format(float number

[, int decimals])

285

SINTVA LNJWNOYIY 11nVv43Q ONILLIS

CREATING AND USING FUNCTIONS

Chapter 10

Creating and Using ® O O Cost Calculater ™
Functions That Return Quantity: 22|

a Value Price: [259 |

Functions do more than take arguments;

they can also return values. To do so requires

just two more steps. First, you use the return Figure 10.8 This simple form
statement within the function. Second, you takes two values on which
use the output somehow when you call calculations will be made

the function. Commonly, you'll assign the (see Figure 10.9).

returned value to a variable, but you can also,

for example, directly print the output. Here is ® O O Cost Caleulator
the basic format for a function that takes two

Your total comes to 556.98.
arguments and returns a value:

. . Quantity:
function make_full_name($first, $last) { '

$name = $first . ' ' . $last; Price: |
, return $name;
£
This function could be used like so: Figure 10.9 The result of the
calculation, which takes place
$full_name = make_full_name($fn, $1n); within a user-defined function.

There the returned value of the function
is assigned to a variable. Here it's printed
immediately:

print make_full_name($fn, $1n)

To best demonstrate this concept, let’s create
a function that performs a simple calcula-
tion and formats the result. This script will
display an HTML form where a user enters a
quantity and price (Figure 10.8). When the
form is submitted (back to this same page),

a total value will be determined and printed
(Figure 10.9).

286

Creating Functions

To create and use a function that
returns a value:

1. Create a new PHP document in your text
editor or IDE (Script 10.4):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

<title>Cost Calculator</title>
</head>

<body>
continues on next page

Script 10.4 This script both displays and handles an HTML form in order to perform some basic calculations. The
script uses a function that takes two arguments and returns a single value.

eceoe =] Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
4 <head>

5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
6 <title>Cost Calculator</title>

7 </head>

8 <body>

9 <?php // Script 10.4 - calculator.php

10 /* This script displays and handles an HTML form.

11 It uses a function to calculate a total from a quantity and price. */
12

13 // This function performs the calculations.

14 function calculate_total ($quantity, $price) {

15

16 $total = $quantity * $price; // Calculation

17 $total = number_format ($total, 2); // Formatting

18

19 return $total; // Return the value.

20

21 } // End of function.

22

(script continues on next page)

287

SNOILIONN{ 9NISM) ANV SNILVIY)

CREATING AND USING FUNCTIONS

Chapter 10

2. Begin the PHP code:
<?php // Script 10.4 - calculator.php

3. Define the function:
function calculate_total ($quantity,

}

$price) {
$total = $quantity * $price;
$total = number_format ($total, 2);

return $total;

This function takes two arguments—a

quantity and a price—and multiplies
them to create a total. The total value is
then formatted before it’s returned by
the function.

Script 10.4 continued

eoce = Script

23 // Check for a form submission:

24 if (isset($_POST['submitted'])) {

25

26 // Check for values:

27 if (is_numeric($_POST['quantity']) AND is_numeric($_POST['price'])) {
28

29 // Call the function and print the results:

30 $total = calculate_total($_POST['quantity'], $_POST['price']);

31 print "<p>Your total comes to $$total.</p>";
32

33 } else { // Inappropriate values entered.

34 print '<p style="color: red;">Please enter a valid quantity and price!</p>";
35 }

36

37 3}

38 7>

39 <form action="calculator.php" method="post">

40 <p>Quantity: <input type="text" name="quantity" size="3" /></p>

41 <p>Price: <input type="text" name="price" size="5" /></p>

42 <input type="submit" name="submit" value="Calculate!" />

43 <input type="hidden" name="submitted" value="true" />

44 </form>

45 </body>

46 </html>

288

Creating Functions

Returning Multiple Values

User-defined functions frequently return
just a single value but can return multiple
values by using arrays. Here's how you go
about this:

function some_function($al, $a2) {
// Do whatever.
return array($vl, $v2);

k;

Then, to call this function, use the 1ist()
function to assign the array elements to
individual variables:

list($varl, $var2) = some_function($pl,
$p2);

The end result is that $v1 from the func-
tion is assigned to $varl in the PHP script,
and $v2 from the function is assigned

to $var2.

Although this may seem like a silly use of
a function, the benefits of putting even a
one-step calculation into a function are
twofold: First, the calculation will be eas-
ier to find and modify at a later date with
your function located at the beginning of
your script instead of hidden in the rest of
the code; and second, should you want to
repeat the action again in a script, you can
do so without duplicating code.

. Begin the conditional to see if the form

was submitted:

if (isset($_POST['submitted'])) {
Because this page both displays and
handles the HTML form, it has a con-
ditional that checks for the presence of
a $_POST['submitted'] variable. If this
variable is set, the script should handle
the form.

. Validate the form data and use the

function:
if (is_numeric($_POST['quantity'])
AND is_numeric($_POST['price'])) {
$total = calculate_total($_POST
['quantity'], $_POST['price']);
print "<p>Your total comes
to $<span style=\"font-weight:
bold;\">$total.</p>";
This part of the PHP code—which handles
the form if it has been submitted—first
checks that a numeric quantity and price
were entered. If so, the total is determined
by calling the calculate_total() func-
tion and assigning the result to the $total
variable. This result is then printed out.

continues on next page

289

SNOILIONN{ 9NISM) ANV SNILVIY)

CREATING AND USING FUNCTIONS

Chapter 10

6.

Complete the conditionals:
} else {
print '<p style="color: red;">
Please enter a valid quantity
and pricel!</p>";

}

If either of the form variables was not
properly submitted, a message is printed
indicating such. The final curly brace
closes the form submission conditional.

Alittle CSSis applied to both printed
messages (here and in Step 5).

Display the HTML form:
7>
<form action="calculator.php"
method="post">
<p>Quantity: <input type="text"
name="quantity" size="3" /></p>
<p>Price: <input type="text"
name="price" size="5" /></p>
<input type="submit" name="submit"
value="Calculate!" />
<input type="hidden" name=
"submitted" value="true" />
</form>

The form itself is quite simple, requesting
two different values from the user (Figure
10.8). The hidden form input is used as a
trigger for the handling code, indicating
that the form was submitted. Because this
form is created outside of the main sub-
mission conditional, the form will always
be displayed by the page.

Complete the HTML page:

</body>
</html>

Save the page as calculator.php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 10.9).

v Tip

B You can have only one return statement

executed in a function, but the same func-
tion can have multiple return statements.
As an example, you may want to write a
function that checks for a condition and
returns a value indicating whether the
condition was satisfied. In such a case,
youd code as follows in your function:
if Ccondition) {

return TRUE;
1 else {

return FALSE;

}

The result returned by the function is
either TRUE or FALSE, indicating whether
the stated condition was met.

290

Creating Functions

Understanding
Variable Scope

The concept of variable scope wasn't intro-
duced earlier because without an under-
standing of functions, scope makes little
sense. Now that you are acquainted with
functions, this section will revisit the topic
of variables and discuss in some detail just
how variables and functions work together.

As you saw in the second section of this
chapter, “Creating and Calling Functions
That Take Arguments;” you can send variables
to a function by passing them as arguments.
However, you can also reference an external
variable from within a function using the
global statement. This is possible because
of variable scope. The scope of a variable is
the realm in which it exists. By default, the
variables you write in a script exist for the
life of that script. Conversely, environment
variables, such as $_SERVER['PHP_SELF'],
exist throughout the server.

Functions, though, create a new level of
scope. Function variables—the arguments
of a function as well as any variables defined
within the function—exist only within that
function and aren't accessible outside of

it (that is, they're local variables with local
scope). Likewise, a variable from outside a
function can only be referenced by passing

it to the function as an argument or by using
the global statement. The global statement
roughly means, “I want this variable within
the function to refer to the same named vari-
able outside of the function.” In other words,
the global statement turns a local variable
with local scope into a global variable with
global scope. Any changes made to the vari-
able within the function are also passed on to
the variable when it's outside of the function
(assuming the function is called, that is),
without using the return command.

continues on next page

291

3d0DG FTaVIIVA SNIANVLSYIAN])

UNDERSTANDING VARIABLE SCOPE

Chapter 10

The syntax of the global statement is
as follows:

function function_name($args) {
global $variable;
statement(s);

}

This leads to another issue regarding func-
tions and variables: Because of variable
scope, alocal variable within a function is

a different entity (perhaps with a different
value) than a variable outside of the function,
even if the two variables use the exact same
name. Let’s go over this more explicitly...

Say you have:

function test($arg) {
// Do whatever.

h
$var = 1;
test($var);

When the function is called, the value of $var
will be assigned $arg, so their values are the
same but their names are different and they
are different variables. However, if the name
of the argument in the function is also $var—

function test($var) {
// Do whatever.

h
$var = 1;
test($var);

—then the $var variable within the function
is assigned the same value as the original
$var outside of the function—but theyre
still two separate variables. The one has a
scope within the function, and the other has
a scope outside of it. This means that you
can use the exact same name for variables in
the function as exist outside of the function
without conflict. Just remember they aren't
the same variable. What happens to a vari-
able’s value within a function only affects that
variable within the function.

292

Creating Functions

This is all true unless you use the global
statement, of course, which does make the
two variables the same:

function test() {
global $var; // Same!
print $var; // Prints 1

}
$var = 1;
test();

To demonstrate variable scope, let’s rework
the calculator. php script using the global
statement.

To use the global statement:

1. Open calculator.php (Script 10.4) in
your text editor or IDE, if it is not already.

2. Before the function definition, add the
following (Seript 10.5):
$tax = 8.75;
Create a $tax variable with a set value
to be used in the cost calculations. It's
assigned a value outside of the function
because it will be used later in the main
body of the script.

continues on page 295

Script 10.5 The function in this script can use the $tax variable—even though it hasn’t been passed to the
function—thanks to the global statement.

800 5 Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
6 <title>Cost Calculator</title>

7 </head>

8 <body>

9 <?php // Script 10.5 - calculator.php #2

10 /* This script displays and handles an HTML form.

11 It uses a function to calculate a total from a quantity, price, and tax rate. */
12

13 // Define a tax rate:

14 $tax = 8.75;

15

(script continues on next page)

293

3d0DG FTaVIIVA SNIANVLSYIAN])

UNDERSTANDING VARIABLE SCOPE

Chapter 10

Script 10.5 continued

ece =] Seript

16 // This function performs the calculations.

17 function calculate_total ($quantity, $price) {

18

19 global $tax;

20

21 $total = $quantity * $price; // Calculation

22 $taxrate = ($tax / 100) + 1;

23 $total = $total * $taxrate; // Add the tax.

24 $total = number_format ($total, 2); // Formatting

25

26 return $total; // Return the value.

27

28 '} // End of function.

29

30 // Check for a form submission:

31 if (isset($_POST['submitted'])) {

32

33 // Check for values:

34 if (is_numeric($_POST['quantity']) AND is_numeric($_POST['price'])) {

35

36 // Call the function and print the results:

37 $total = calculate_total($_POST['quantity'], $_POST['price']);

38 print "<p>Your total comes to $$total,
including the $tax percent tax rate.</p>";

39

40 } else { // Inappropriate values entered.

41 print '<p style="color: red;">Please enter a valid quantity and price!</p>";

42 }

43

44 3}

45 7>

46 <form action="calculator.php" method="post">

47 <p>Quantity: <input type="text" name="quantity" size="3" /></p>

48 <p>Price: <input type="text" name="price" size="5" /></p>

49 <input type="submit" name="submit" value="Calculate!" />

50 <input type="hidden" name="submitted" value="true" />

51 </form>

52 </body>

53 </html>

294

Creating Functions

3.

Within the function definition, add a
global statement:

global $tax;

This statement tells the function to incor-
porate the same $tax variable as the one
that exists outside of the function.

Before the $total in the function is
formatted, recalculate the value using the
tax rate:

$taxrate = ($tax / 100) + 1;
$total = $total * $taxrate;

To add the tax to the total value, you start
by dividing the tax by 100, to create a
percentage. Then you add 1 to this value
to get a multiplier. This result is then
multiplied by the total to come up with
the new, final total.

Notice that you use a $taxrate variable
(based on $tax) to perform these calcula-
tions. This is because you'll print out the
value of $tax later, and any changes made
to it here will be reflected (because it’s a
global variable).

Alter the main print() line (after the
function call) so that it prints the tax rate
as well:

print "<p>Your total comes to

$<span style=\"font-weight:

bold;\">$total, including

the $tax percent tax rate.</p>";
The $tax variable defined at the begin-
ning of the script is printed out at the end.
Ifyou hadn't used the $taxrate variable
within the function and made the altera-
tions to the global $tax instead, those
calculations would be reflected in the
value printed here.

continues on next page

295

3d0DG FTaVIIVA SNIANVLSYIAN])

UNDERSTANDING VARIABLE SCOPE

Chapter 10

6. Save the script, place it in the proper
directory for your PHP-enabled server,
and test it in your Web browser
(Figures 10.10 and 10.11).

v Tips

B Constants and the superglobal arrays
($_GET, $_POST, $_COOKIE, and $_SESSION)
have the added benefit that theyre always
available inside functions without requir-
ing the global statement (which is why
they are called superglobal).

W Proper function design suggests that you
should be cautious when using global
variables. Arguably, a function should be
passed all the information it needs, so
that global variables are not required. By
doing so, you make the function more
independent and portable.

® O O Cost Calculator
Quantity: |15 |
Price: |129.63 |

Calculate!

Figure 10.10 Run the form
again...

® O O Cost Calculator =
Your total comes to 52,114.59,
including the 8.75 percent tax
rate.

Quantity: | |

O
Price: |

Figure 10.11 ...and the calculation
now makes use of a global $tax
variable.

296

FILES AND

DIRECTORIES

To truly take your Web applications to the
next level, you'll need a method of storing
and retrieving data. There are two primary
ways of storing data with PHP: using files
(and directories) or databases. This chapter
will discuss the former, and the next chapter
will introduce the latter. It's worth your time
to comprehend both methods (in fact, a
database is just a really fancy system for writ-
ing to and reading from data stored in files on
the server). Although a database can be more
powerful and secure than a file-based system,
you may be surprised at how much you can
do by sending and retrieving information
from simple text documents on the server!

In this chapter, you'll learn about file permis-
sions and then learn to write to, read from,
and lock files. After that, you'll see how to
handle file uploads with PHP, how to create
directories, and an alternate method for read-
ing data from a file. These last two examples
will also demonstrate a simple file-based
registration and login system that you can
use in your Web applications.

297

S3INO0LOIYIQ ANV S3114

FILE PERMISSIONS

Chapter 11

File Permissions

Before attempting to write to and read from
a file, you must have an understanding of file
permissions. The topic is large enough that
you may want to pursue it further, but this
discussion will get you started. Up front I will
say that most of the information herein will
be an issue only for non-Windows users. In
my experience, the preparatory steps to be
taken aren’t necessary when running PHP on
a Windows computer. Still, having an under-
standing of permissions as a whole is a good
idea, especially if you might later be running
your PHP scripts on a non-Windows server.

Permissions identify who can do what with

a file or directory. The options are read, write,
and execute (actually, files can be designated
executable, whereas directories are made
searchable). On top of that, these options can
be set differently for three unique types of
users: the owner of the file (the person who
created it or put it on the server); members of
a particular group, which a server administra-
tor sets; and others (those who don't fall into
the previous two categories). There is also the
implied everyone level, which includes all of
the previously mentioned users.

Normally, a file's owner is given read and write
permissions by default, whereas groups and
others are able to only read a file or direc-
tory. For the examples in this chapter, PHP
needs to be able to write to some files and
directories, so you must be able to expand
the permissions. Being able to write to a

file or directory can be a security issue and
should only be designated an option when
absolutely necessary. Keep this in mind, and
pay attention to some of the security tips
mentioned throughout this chapter.

A More Secure File Structure

Having writable files and directories on
the server is a bit of a security risk. If the
Web server (and everyone else) can write
to the file or directory, then what's to stop
malicious users from trying to hack your
system using this same gateway?

In general, the security issue is more
important for directories than for files.
This is because anyone can write anything
to an open directory, including viruses,
evil scripts, and Trojan horses.

The best security measure you can take
in such instances is to place your writ-
able files and directories outside of the
Web directory. In other words, if your
Web pages go in C:\inetpub\wwwroot or
/Users/~username/Sites, then if you place
items in C:\1inetpub or /Users/~username,
they are accessible to the locally running
PHP but not to others over the Internet.
The examples in this chapter follow this
structure, and you should do so as well.

298

Files and Directories

800 Add A Quotation (=]

‘Warning: fopen(quotes.txt) [function.fopen]: failed to
open stream: Permission denied in /Users/larryullman
/Sites/add_quote.php on line 21

Your quotation could not be stored due to a system error,

Enter your gquotation
here.

(' Add This Quote!

y

Figure 11.1 The ...failed to open stream: Permission
denied... message is the result of attempting to do
something to a file that isn’t allowed by the server.
Here the server is denying the fopen() function that
is attempting to open quotes. txt for the purpose of
writing to it.

Web root parent Web root
= =
=

(3 I

T - 8 add_quote.php
| :
|
|
[

e quotes.txt

Figure 11.2 The quotes. txt file should ideally be
placed in the same directory as your Web documents
directory (i.e., not in the directory with the Web
documents).

Creating the text file

In the first example, you'll work with a text
file on the server named quotes. txt. If the
file doesn't have the correct permissions to
do what your PHP script is asking it to, you'll
see an error message similar to that shown in
Figure 11.1. Before proceeding through this
chapter, you should create quotes. txt on the
server and establish its permissions.

To create quotes.txt:

1. Open your text editor or IDE and create a
new, blank document.

2. Without typing anything into the file, save
it as quotes. txt.

3. Move the file just outside of the Web root
directory of your PHP-enabled server
(Figure 11.2)

The sidebar “A More Secure File Structure”
explains where you should put the file with
respect to your Web directory and why.

v Tips

B The file_exists() function returns
TRUE if a submitted filename is found on
the server. This can be used to test for the
existence of a file before doing anything
with it.
if (file_exists('somefile')) { ..

B Assuming that PHP has write permis-
sions on a directory, you can create a
blank document within that directory
using PHP. This is accomplished using the
touch() function:

touch('somefile');

299

SNOISSIWYd3d 3114

FILE PERMISSIONS

Chapter 11

Setting a file’s permissions

The preceding sequence may seem like an
odd series of steps, but in order to set the per-
missions on a file, the file must exist first. You
do want the file to be blank, though, because
you'll use PHP to write data to it later.

The desired end result for this example is to
give either others or everyone permission to
read and write (but not execute) quotes. txt.
How you accomplish this depends on:

¢ Whether youre running PHP on your own
computer or on a remote server

¢ The operating system of the PHP-enabled
computer

Unfortunately, it would be impossible to
offer steps for how every user should set the
permissions under any circumstances, but
here are some rough guidelines and steps to
get you going.

To set a file’s permissions on a remote
server:

& Most ISPs offer their users a Web-based
control panel where they can set file per-
missions (Figure 11.3) as well as set other
hosting parameters.

¢ You may be able to change a file’s permis-
sions using your FTP client (Figure 11.4).

Change permissions for file dmansights.com [/ httpdocs / quotes.txt

Read mode Write mode Execute/search mode
Owner ™ ™ O
Group &] 5]
Others E B =)

@ o«] [@ caxa

Figure 11.3 This control panel, provided by a hosting company, lets you adjust a file’s permissions.

300

Files and Directories

Change file attributes rz|

Flease select the new attributes for the file "quotes. txt",
Dwner permissions

Read Write [JExecute

SHOUP pErmissions

Read Write [Execute

Public permissions

Read Write [Execute

‘fou can use an x at any position to keep the permission the
origingl files have,

L Ok][Cancel J

Figure 11.4 The FileZilla FTP application uses
this pop-up window to allow you to set a
file’s permissions.

‘ quotes.txt 4 KB
tect| Modified: Yesterday at 12:02 PM

P Spotlight Comment s:

P Ceneral:
¥ More Info:

¥ Name & Extension:

P Open with:

¥ Preview:

¥ Sharing & Permissions:

You can read and write

[name | Privitege
A lamyullman (Me) | ¥ Read & Write
A0 staff + Read & Write
I everyone i + Read & Write
|
+ = - g8

i

Figure 11.5 The Mac OS X Get Info panel
lets you adjust a file’s ownership and
permissions, among other things.

To set a file’s permissions on your
computer:

¢ Ifyoure working on your own Windows
computer, you may not need to change
the permissions. To test this theory,
try each example first. If you see the
Permission denied error message (Figure
11.1), use the next suggestion to rework
the permissions.

¢ Windows users who need to change the
permissions can do so by viewing the
file or directory’s properties. The result-
ing panel will differ for each version of
Windows, but basically you just need to
tweak who can access the file and how.

¢ Mac OS X users must select the file in the
Finder and choose Get Info from the File
menu. From there, use the Ownership &
Permissions subpanel to adjust the file’s
permissions (Figure 11.5).

¢ On Unix (including users of Linux and
Mac OS X) you can also use the chmod
0666 quotes.txt line in a terminal win-
dow, assuming that you have authority to
do so.

301

SNOISSIWYd3d 3114

FILE PERMISSIONS

Chapter 11

v Tips

B Most operating systems have no PHP
user. Instead, the PHP user is essentially
the user the Web server application (for
example, Apache or IIS) is running as.
On the Unix family, Apache often runs
as nobody. On Windows, the Web server
frequently runs as the same user who is
logged in (and who probably created the
file), meaning there will be no need to
alter a file's permissions.

B Ifyoure already familiar with Telnet and
chmod, you probably also understand what
the 0666 number means; but here’s an
explanation for those of you who aren’t
familiar with it. The @ is just a prefix indi-
cating the number is written in an octal
format. Each 6 corresponds to read (4)
plus write (2) permission—first assign-
ing 6 to the owner, then to the group, and
then to others. Comparatively, 0777 allows
read (4) plus write (2) plus execute (1)
permission to all three types of users. This
numbering is applicable for Unix variant
operating systems (Linux, Solaris, and
Mac OS X).

B PHP has several functions for changing a
file or directory’s permissions, including
chgrp(), chown(), and chmod(). However,
they will only work if PHP already has
permission to modify the file or directory
in question.

302

Files and Directories

Table 11.1

fopen() Modes

MopE MEANING

r Reading only; begin reading at the start
of the file.

r+ Reading or writing; begin at the start of
the file.

w Writing only; create the file if it doesn’t exist,
and overwrite any existing contents.

W+ Reading or writing; create the file if it doesn’t

exist, and overwrite any existing contents
(when writing).

a Writing only; create the file if it doesn’t exist,
and append the new data to the end of the file
(retain any existing data and add to it).

a+ Reading or writing; create the file if it doesn’t
exist, and append the new data
to the end of the file (when writing).

X Writing only; create the file if it doesn’t exist,
but do nothing (and issue a warning) if the file
does exist.

X+ Reading or writing; create the file if it doesn’t

exist, but do nothing (and issue a warning) if
the file already exists (when writing).

Writing to Files

Because you need to write something to a
file in order to read something from it, this
chapter explores writing first. Writing to a
file on the server is a three-step process: first,
open the file; second, write your data to it;
and third, close the file. Fortunately, PHP's
built-in functions for doing these steps are
quite obvious:

$fp = fopen(filename, mode);
fwrite($fp, data to be written);
fclose($fp);

To write to a file, you must create a file
pointer when opening it. The first argument
to the fopen() function is the name of the
file. This can be an absolute or relative path
(see the sidebar “File Paths”). The file pointer
returned by the fopen() function will be
used by PHP to refer to the open file.

The most important consideration when
opening the file is what mode you use.
Depending on what you intend to do with
the file, the mode dictates how to open it. The
most forgiving mode is a+, which allows you
to read or write to a file. It creates the file if it
doesn't exist, and it appends—hence a—new
data to the end of the file automatically.
Conversely, r only allows you to read from a
file. Table 11.1 lists all the possible modes.
Each mode can also be appended with a b flag,
which forces files to be opened in binary
mode. This is a safer option for files that might
be read on multiple operating systems.

The fwrite() function writes the new data
(sent as the second argument in the function
call) to the file in accordance with the selected
mode. You normally want each piece of data
to be written on its own line, so each sub-
mission should conclude with the appropriate

continues on next page

303

S3714 O1L ONILRIM

WRITING TO FILES

Chapter 11

line break for the operating system of the com-
puter running PHP. This would be

& \non Unix and Mac OS X
& \r\non Windows

For most users and many situations, just call-
ing fwrite() may be all you need to do. But if
the HTML page is using a different encoding
than the default for the server, you'll need to
add aline of code. For example, say the default
encoding for the computer on which PHP

is running /SO Latin 9 (Chapter 1, “Getting
Started with PHP,” introduces the subject of
encoding). If the HTML page uses the UTF-8
encoding—as all of the examples in this book
do—then the form data will automatically be
received as UTF-8 encoded. This means that
PHP will attempt to write UTF-8 data but the
computer is expecting ISO Latin 9 in its files
(Figure 11.6). The solution is to indicate the
encoding being used:

stream_encoding(file_pointer, encoding);

This line should be done once, before writing
to or reading from a file.

As the last step of the writing process, you
close the file by once again referring to the file
pointer while calling the fclose() function:

fclose(file_pointer);

Let’s create a form that stores user-submitted
quotations in a plain text file (Figure 11.7).
Later in this chapter, another PHP script will
retrieve and randomly display these quotations.

Notice: Farite]) [function fente] 30 character umcode buffer downcoded for binary stream
runtime_encodmng in C:'\Program Files'Abyss Web Server'htdocstadd_quote.php on line 21

Figure 11.6 This convoluted error message results from mixing encodings.

304

Files and Directories

©) Add A Quotation - Mozilla Firefox [|[E][X] To write to an external file:
Hle Edt Vew Hstory Bookmarks Tools Help 1. Create anew PHP document in your text
I: i |http:,l',l'localhost:BDDD,l'add_quote.php T | editor or IDE (Script 11.1):
<!DOCTYPE html PUBLIC "-//W3C//DTD

Enter wyour guotation

here. XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

Add This Quatel xhtml" xml:lang="en" lang="en">

<head>
Figure 11.7 This very simple form lets a user submit a <meta http-equiv="content-type"
quotation that will be written to a text file. content="text/html:

charset=utf-8" />
<title>Add A Quotation</title>
</head>
<body>

continues on next page

Script 11.1 This script takes a user-submitted quotation and stores it in a text file.
eece =) Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Add A Quotation</title>

7 </head>

8 <body>

9 <?php // Script 11.1 - add_quote.php

10 /* This script displays and handles an HTML form. This script takes text input and stores it in
a text file. */

11

12 // Check for a form submission:
13 if (isset($_POST['submitted'])) { // Handle form.

14

15 if (lempty($_POST['quote']) && ($_POST['quote'] != 'Enter your quotation here.')) { //
Need some thing to write.

16

17 if ($fp = fopen ('../quotes.txt', 'ab')) { // Try to open the file.

18

19 // Set the encoding:

20 stream_encoding($fp, 'utf-8');

21

22 fwrite($fp, "{$_POST['quote']}\n"); // Write the data. Use \r\n on Windows.

23 fclose($fp); // Close the file.

24

(script continues on next page)

305

S3714 O1L ONILRIM

WRITING TO FILES

Chapter 11

2. Create a section of PHP code:
<?php // Script 11.1 - add_quote.php

3. Seeifthe form has been submitted:
if (isset($_POST['submitted'])) {
This page both displays and handles the
HTML form. This conditional checks to
see if the form has been submitted, in
which case the quotation should be
written to the text file.

4. Check that a quotation was entered:
if ('empty($_POST['quote']) &&

($_POST['quote'] !'= '"Enter your
quotation here.')) {

This simple conditional validates the

user-supplied data. The first part confirms
that the $_POST['quote'] variable isn't
empty. The second part confirms that the
variable doesn't still have the default value
(as shown in Figure 11.7).

Script 11.1 continued

ece =) Script

25 // Print a message:

26 print "<p>Your quotation has been stored.</p>";

27

28 } else { // Could not open the file.

29 print '<p style="color: red;">Your quotation could not be stored due to a system
error.</p>";

30 }

31

32 } else { // Failed to enter a quotation.

33 print '<p style="color: red;">Please enter a quotation!</p>';

34 }

35

36} // End of submitted IF.

37

38 // Leave PHP and display the form:

39 7>

40

41 <form action="add_quote.php" method="post">

42 <textarea name="quote" rows="5" cols="30">Enter your quotation here.</textarea>

43 <input type="submit" name="submit" value="Add This Quote!" />

44 <input type="hidden" name="submitted" value="true" />

45 </form>

46

47 </body>

48 </html>

306

Files and Directories

File Paths

There are two ways of referring to any file
or directory on the computer: using an
absolute or relative path. An absolute path
begins at the root of the computer:

& C:\somedir\somefile.txt (Windows)

& /Users/username/somefile.txt
(Mac 0OS X).

A relative path will not start with the
root of the computer—C:\ or /. Instead it
might be relative to the current working
directory:

¢ fileA.txt (this directory)

& dirB/fileB.txt (inside dirB)

& . ./fileC.txt (inside parent directory)
*

../dirD/fileD.txt (inside parallel
directory)

Two periods together represent the cur-
rent directory’s parent folder. A single
period by itself represents the current
directory. If a files name begins with a
single period, the file is hidden (on Unix,
Linux, and Mac OS X).

It technically doesn’t matter whether
you use a relative or an absolute path to
refer to a file, so long as the reference is
accurate.

5. Attempt to open the file for writing:

if ($fp = fopen ('../quotes.txt’,
'ab')) {
By placing the fopen() statement in a
conditional, you make the PHP script
attempt to write to the file only if it could
be successfully opened for writing. At the
same time, the file pointer is created.
The file opened is quotes. txt, which
should be located in the directory above
this script (which is presumably in the Web
directory root, see Figure 11.2). See the
sidebar “File Paths” for more on this syntax.

The mode being used is ab, meaning that
the file should be opened for writing

and the data being written should be
appended to any existing data. The b flag
is added so that the file is opened in a
binary safe mode. That may not be neces-
sary, but it can't hurt.

. Set the encoding:

stream_encoding($fp, 'utf-8');

As already explained, since the HTML
page is encoded in UTF-8, the submitted
data will also be UTF-8 encoded. This line
indicates the string’s encoding, prior to
writing that string to a file.

. Write the data to the file, close the file,

and then print a message:

fwrite($fp, "{$_POST['quote']}\n");

fclose($fp);

print "<p>Your quotation has been
stored.</p>";

The first line writes the user-submitted

data to the file. In this example, you use

the \n newline character to mark the

end of the line. If you're using Windows,

replace \n with \r\n.

After that, the file is closed by referring

to the same file pointer, and a simple

message is displayed to the user.

continues on next page

307

S3714 O1L ONILRIM

WRITING TO FILES

Chapter 11

8. Complete the conditionals:
} else {
print '<p style="color:
red;">Your quotation
could not be stored due
to a system error.</p>";

}
} else {
print '<p style="color:
red;">Please enter a
quotation!</p>";
}
} // End of submitted IF.
The first else completes the conditional
that checks if PHP could open the file for
writing. If you see this message, there's
likely a permissions issue or the file
reference is incorrect. The second else
completes the conditional that checks
whether no quotation was entered. The
final closing curly brace marks the end of
the main submission conditional.

Because this page handles the form and

then displays it again (so that the user may
keep entering quotations), the form isn't
displayed as part of an else statement as it
has been in other examples in this book

9. Complete the PHP section:
7>

Because the rest of this script is standard
HTML, exit out of the PHP code by clos-
ing the PHP tag.

10. Create the HTML form:
<form action="add_quote.php"
method="post">
<textarea name="quote" rows="5"
cols="30">Enter your quotation
here.</textarea>
<input type="submit" name=
"submit" value="Add This
Quote!" />
<input type="hidden" name=
"submitted" value="true" />
</form>

308

Files and Directories

©) Add A Quotation - Mozilla Firefox [= |[B|[X]

File Edit Miew History Bookmarks Tools

Help

I: |j |http:,l',l'localhost:BDDD,l'add_quote.php

77 -

Feality is that
which, when you stop
helieving in itc,
doesn't go away.
{Phillip K. Dick)

Acd This Cuotel

Figure 11.8 Filling out the form...

) Add A Quotation - Mozilla Firefox [|[B]

File Edit ‘Wiew History Bookmarks Tools

Tour quotation has been stored.

Help

Enter your gquotation here.

Add This Cuotel

Figure 11.9 ...and the result if all went well.

11

12

13

14

.

This HTML form presents a text box
where the user can enter a quotation.
The text box has a preset value of Enter
your quotation here., created by putting
that text between the textarea tags.

As you must with any script that both han-
dles and displays a form, be certain that
the name of your hidden input matches
the $_POST array index being used in the
if (isset($_POST['submitted'])) con-
ditional. Also, the form’s action attribute
should be the name of this same script.

Complete the HTML page:
</body>
</html>

Save the file as add_quote.php and place
it in the proper directory for your PHP-
enabled server.

Again, refer back to Figure 11.2 for how
the add_quote.php and quotes. txt
should be placed on your server relative
to each other. If this arrangement isn't
possible for you, or if it’s just too confus-
ing, then place both documents within
the same directory (the one from which
you can execute PHP scripts) and change
the fopen() line to:

if ($fp = fopen ('quotes.txt',
'ab')) {

Run the script several times in your Web

browser (Figures 11.8 and 11.9).

If you want, open the quotes. txt filein
a text editor to confirm that the data has
been written to it.

309

S3714 O1L ONILRIM

WRITING TO FILES

Chapter 11

v Tips

If you receive a permissions error when
you run this script (see Figure 11.1), either
the permissions aren't set properly or

the PHP script couldn’t access the data
file. This can happen if you misspell the
filename or incorrectly reference the file's
path on the server.

Having a writable file on your server can
be a bit of a security risk. See the sidebar
“A More Secure File Structure” earlier in
this chapter for ways to improve on the
security of a script like add_quote. php.

PHP 5 added a file_put_contents()
function to the language. It replicates the
fopen(), furite(), fclose() processin
one step.

If your version of PHP is running in safe
mode or has the open_basedir directive
set, you may be limited in using PHP to
access files and directories. Check your
phpinfo() script to see these settings for
your server.

If a script or Web application will be
accessing the same file multiple times, it
may make sense to assign the filename
and path (where it is on the server) to a
variable, for the sake of convenience. Then
you can feed this variable to the fopen()
function.

As an extra step of safe-checking, you can
use the is_writable() function to deter-
mine whether the server will allow you to
write data to the file before you attempt to
open it. Here is how youd begin to incorpo-
rate it (this is only a part of the script):
if (is_writable('../quotes.txt')) {
// Attempt to open...
} else {
print '<p style="color: red;">The
file is not writable!</p>";

310

Files and Directories

Table 11.2
flock() Lock Types
Lock MEANING
LOCK_SH Shared lock for reading purposes
LOCK_EX Exclusive lock for writing purposes
LOCK_UN Release of a lock
LOCK_NB Non-blocking lock

Locking Files

Although the last example worked fine
(hopefully), it could be improved on. If only
a single user was submitting the form at one
time, there would be no problems. But what
if two or more users submitted different quo-
tations simultaneously? In such a case, there
could be problems.

The solution is to temporarily lock the file
while PHP is writing to it. You can do so using
the flock() function:

$fp = fopen('filename.txt', 'a+b');
flock($fp, locktype)

The different lock types are represented by
the constants listed in Table 11.2.

As an example, to temporarily lock a file dur-
ing a write, use this code:

$fp = fopen('filename.txt', 'a+b');
flock ($fp, LOCK_EXD;
fwrite ($fp, 'data to be written');
flock ($fp, LOCK_UN);

To demonstrate, let’s rewrite add_quote. php
to lock the file during the writing process.

311

S3114 ONDIDOT

LocKING FILES

Chapter 11

To use file locks:

%) Add A Quotation - Mozilla Firefox (= |[B)(X]
1. Open add_quote.php (Script 11.1) in your Fle Edi Wew History Bookmarks Tools Help
text editor or IDE, if it isn't already open. ([F) | http:/{localhost:#000}add_quate.php 75 - |
2. Before the fwrite() line, add the follow- L professional is Someocne wha
ing (Script 11.2): can do hiz best work when he
doesn't feel like it. [Alistair

flock($fp, LOCK_EXD;

This command places an exclusive lock
on the file so that other scripts can't write

to it at the same time. Add This Cuotel
3. After the fwrite() line, add:
flock($fp, LOCK_UN); Figure 11.10 Using the form once again...

This command unlocks the file so that it
can be accessed again.

Cooke)

Script 11.2 The modified version of the add_quote.php script locks the data file for better security and reliability.
8O6 = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Add A Quotation</title>

7 </head>

8 <body>

9 <?php // Script 11.2 - add_quote.php #2

10 /* This script displays and handles an HTML form. This script takes text input and stores it in
a text file. */

11

12 // Check for a form submission:
13 if (isset($_POST['submitted'])) { // Handle form.

14

15 if (lempty($_POST['quote']) && ($_POST['quote'] != '"Enter your quotation here.')) { //
Need some thing to write.

16

17 if ($fp = fopen ('../quotes.txt', 'ab')) { // Try to open the file.

18

19 // Set the encoding:

20 stream_encoding($fp, 'utf-8');

21

22 // Lock the file:

23 flock($fp, LOCK_EX);

24

25 fwrite($fp, "{$_POST['quote'I}\n"); // Write the data. Use \r\n on Windows.

26 flock($fp, LOCK_UN); // Unlock.

27 fclose($fp); // Close the file.

28

29 // Print a message:

30 print "<p>Your quotation has been stored.</p>";

31

(script continues on next page)

312

Files and Directories

4. Save the file, place it in the proper direc-
tory for your PHP-enabled server, and

test it again in your Web browser
(|;D| |http:,I',I'Ic-calhnst:EEDDEI,I'add_quc-te.php ﬁ - | (Figures 11.10 and 11.11).

) Add A Quotation - Mozilla Firefox |
File Edit Yiew History Bookmarks Tools Help

Your quotation has been stered. v Tips

B The file will automatically be unlocked
when its closed, but it’s still not a bad idea
to specifically unlock it once the file writ-
ingis complete.

Enter your gquotation here.

B Technically, if a file is opened in an append-
ing mode, as in this example, not locking it
probably won't be a problem even if mul-
Figure 11.11 ...the quotation is still stored without a tiple scripts are writing to the file simulta-
problem. neously. That said, better safe than sorry!

B For locking to work, every script that
writes to a file needs to use locking,.

B Intruth, the benefit added by locking a
file is only marginal (but every little bit
helps). A more secure and reliable method
of storing data is to use a database. You'll
learn more about this in the next chapter.

Script 11.2 continued

eoeoe = Script

32 } else { // Could not open the file.

33 print '<p style="color: red;">Your quotation could not be stored due to a system
error.</p>";

34 }

35

36 } else { // Failed to enter a quotation.

37 print '<p style="color: red;">Please enter a quotation!</p>';

38 }

39

40 '} // End of submitted IF.

41

42 // Leave PHP and display the form:

43 7>

44

45 <form action="add_quote.php" method="post">

46 <textarea name="quote" rows="5" cols="30">Enter your quotation here.</textarea>

47 <input type="submit" name="submit" value="Add This Quote!" />

48 <input type="hidden" name="submitted" value="true" />

49 </form>

50

51 </body>

52 </html>

313

S3114 ONDIDOT

READING FROM FILES

Chapter 11

Reading from Files

Now that you've created a script that writes
data to a file, it's time to create one that can
read the information. Reading data from a file
can be much easier than writing to it. Instead
of creating a file pointer and using the fopen()
function, you can read the file in one fell swoop:

$data = file('filename.txt');

The file() function is a valuable built-in tool
in PHP. It reads everything from a file and
places that information into an array. Each
array element contains one line from the file,
where each line is terminated by a newline
(\nor\r\n).

If filename. txt contains two lines of infor-
mation, each of which ends with a newline,
the corresponding array will contain two
elements. The first element will be equal to
the first line of filename. txt, and the second
element will be equal to the second line.
Once the data is stored into an array, you can
easily manipulate or print it, as you learned
in Chapter 7, “Using Arrays.”

Now you'll use this knowledge to create a
script that randomly displays one of the
stored quotations.

To read from a file:
1. Create anew PHP document in your text
editor or IDE (Script 11.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>View A Quotation</title>
</head>
<body>

314

Files and Directories

2.

3.

Open a PHP code section:
<?php // Script 11.3 - view_quote.php

Read the file contents and store them in
an array:

$data = file('../quotes.txt');

The function reads the file data into

an array called $data. Each element of
$data is a string, which is the submitted
quotation.

If the quotes file is not in the parent direc-
tory of this script, change the reference
here accordingly.

continues on next page

Script 11.3 The view_quote.php file retrieves all the quotations from the text file and displays one at random.
ece

O 00 N O VT & W N

=
S

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>View A Quotation</title>
</head>
<body>
<?php // Script 11.3 - view_quote.php

/* This script displays and handles an HTML form. This script reads in a file and prints a

random line from it. */

// Read the file's contents into an array:
$data = file('../quotes.txt');

// Count the number of items in the array:
$n = count($data);

// Pick a random item:
$rand = rand(@, ($n - 1));

// Print the quotation:
print '<p>' . trim($data[$rand]) . "</p>';

7>

</body>
</html>

315

S3714 WORJ4 ONIAVvIYy

READING FROM FILES

Chapter 11

4, Pick arandom number based on the
number of elements in $data:
$n = count($data);
$rand = rand(@, ($n - 1));
In the first step, you count how many
elements (which is to say, how many
quotations) are in the $data array. Then
you use the rand() function to select a
random number.

If $data has ten elements, theyre indexed
between @ and 9, so that’s the range you
want to use for rand(). To calculate this
range for a variable number of lines in
the text file, use @ and one less than the
number of elements in $data.

5. Print out the quotation:

print '<p>' . trim($data[$rand])
'</p>";
A simple print() statement involving
concatenation is used to print the ran-
dom quotation. To retrieve the quotation,
you refer to the $data array and use the
generated $rand number as the index.
The retrieved quotation is then trimmed
to cut off the newline characters from the
end of the quotation.

6. Complete the PHP code and the HTML
page:
7>
</body>
</html>

7. Save the file as view_quote.php, place it
on your Web server (in the same directory
as add_quote.php), and test it in your Web
browser (Figure 11.12).

8. Reload the page in your Web browser to
view another random quote (Figure 11.13).

B[S

File Edit Miew History Bookmarks Tools Help

) View A Quotation - Mozilla Firefox

(|j |http:,l',l'localhost:BDDD,I'\riew_quote.php ﬁ Y|

The attn of an argument or discussion should not be
victory, but progress. (Joseph Toubert)

Figure 11.12 A random quotation is displayed each
time the page is viewed.

=13
File Edit ‘“iew History Bookmarks Tools Help

I: |j |http:,l',l'localhost:BDDD,I'view_quote.php ‘ﬂf Y|

) View A Quotation - Mozilla Firefox

To do the usefil thing, to say the courageous thing,
to contemplate the beautifil thing: that 15 encugh for
one man's ife. (T3, Ehot)

Figure 11.13 Subsequent viewings of the view_
quote.php script display different quotations from
the text file.

v Tips

B Ifyou want to be extra careful, you can
use the is_readable() function to test
that PHP can read a file before you call the
file() function.

B The file_get_contents() function works
exactly like file() but returns the entire
file as one long string, rather than as an
array.

B The readfile() function reads through
a file and sends the contents to the Web
browser window.

B Later in the chapter, you'll learn a more
complex method of reading a file using
fgets() and fgetcsv().

316

Files and Directories

|[Browse..]|

Figure 11.14 This is how Firefox interprets
the file input type.

Choose File | no file selected

Figure 11.15 This is how the Safari
Web browser interprets the file
input type (prior to selecting a file).

Handling File Uploads

As this book has demonstrated, handling
HTML forms using PHP is a remarkably
easy achievement. Regardless of the data
being submitted, PHP can handle it easily
and directly. The same is true when the user
uploads a file via an HTML form.

In order to give the user the option of upload-
ing a file, you must make three changes to the
standard HTML form. First, the initial form tag
must include the code enctype="multipart/
form-data", which lets the browser know to
expect different types of form data:

<form action="upload_file.php" enctype=
"multipart/form-data" method="post">

The form must also use the POST method.

Second, a special hidden input type should
be added:

<input type="hidden" name="MAX_FILE_
SIZE" value="1000" />

This is a recommendation to the browser of
how large a file, in bytes, can be uploaded.

Third, the <input type="file" name="my_
file" /> elementis used to create the nec-
essary form field (Figures 11.14 and 11.15).

The file type of form input allows the user to
select a file on their computer, which, upon
submission, will be uploaded to the server.
Once this has occurred, you can then use
PHP to handle the file.

In the PHP script, you refer to the $_FILES
variable (think of it as the file equivalent of
$_POST) to reference the uploaded file. The
$_FILES array contains five elements:

name, the name of the file as it was on the
user’s computer

¢ type, the mime type of the file (for
example, image/jpg)

continues on next page

317

SavoidM 3114 ONITANVH

HANDLING FILE UPLOADS

Chapter 11

& size, thesize of the file in bytes

& tmp_name, the temporary name of the file
as it’s stored on the server

error,an error code if something goes
wrong (Table 11.3)

When a file is uploaded, the server places it
in a temporary directory. You can then use
the move_uploaded_file() function to store
the file in its final destination:

move_uploaded_file($_FILES['thefile']
["tmp_name'], "/path/to/dest/
filename");

For PHP to be able to take these steps, you
must set several configurations in the php.
ini file (see the sidebar), and the Web server
needs write access to both the temporary
and final destination directories.

You'll write a basic script that uploads a

file and stores it on the server. Like the
add_quote. php script, this example also both
creates the HTML form (Figure 11.16) and
processes it, all in one page. First, though,
you'll create a writable directory as the desti-
nation point.

To create a writable directory:

1. Create anew folder called uploads,
located outside of the Web directory root
(Figure 11.17).

2. Using the steps outlined in the first sec-
tion of this chapter, set the permissions so
that everyone can write to, read from, and
search (0777 in Unix terms) the directory.
Again, if youre running Windows, you
likely don't need to do anything (try the
next script to see for sure). If youre run-
ning another operating system, check the
list of bullet points for the suggestion that
works for your situation.

%) Upload a File - Mozilla Firefox [= |[0][X]
File Edit Mew History Bookmarks Tools Help

(|j |http:,I',I'Il:ucalhost:SDDD,I'upIDad_File.php ﬁ '|

Tpload a file usimng this form:

| |[Browse.. J

Upload This File

Figure 11.16 This HTML form lets the user select a file
on their computer to upload to the server.

Web root parent Web root
I — Is o —
= =

8 L

- e upload_file.php

T
I
I
| =
[

u-ploads

Figure 11.17 For this example, a writable uploads
directory must exist. Here, it’s placed in the same
directory as the Web root folder. Thus uploads is in
the directory above the one in which the upload_
file.php script resides and is not accessible via
the Internet.

Table 11.3
S_FILES Error Codes
CoDE MEANING
0 No error has occurred.
1 The file exceeds the upload_max_
filesize settinginphp.ini.
2 The file exceeds the MAX_FILE_SIZE

setting in the HTML form.

The file was only partially uploaded.
No file was uploaded.

No temporary directory exists.
Failed write to disk.

Upload prevented by an extension.

o N O W

318

Files and Directories

To use PHP for file uploads:

1. Create a new PHP document in your text
editor or IDE (Script 11.4):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Upload a File</title>
</head>
<body>

continues on page 321

Script 11.4 This script handles a file upload by first defining the proper HTML form and, second, invoking
move_uploaded_file() to move the file to the desired location.

eoce = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Upload a File</title>

7 </head>

8 <body>

9 <?php // Script 11.4 - upload_file.php

10 /* This script displays and handles an HTML form. This script takes a file upload and stores it
on the server. */

11

12 if (isset($_POST['submitted'])) { // Handle the form.

13

14 // Try to move the uploaded file:

15 if (move_uploaded_file ($_FILES['thefile']['tmp_name'], "../uploads/{$_FILES['thefile']

['name’]}")) {

16

17 print '<p>Your file has been uploaded.</p>"';

18

19 } else { // Problem!

20

21 print '<p style="color: red;">Your file could not be uploaded because: '

22

(script continues on next page)

319

SavoidM 3114 ONITANVH

HANDLING FILE UPLOADS

Chapter 11

Script 11.4 continued

eoeoe = Seript

23 // Print a message based upon the error:

24 switch ($_FILES['thefile']['error']) {

25 case 1:

26 print 'The file exceeds the upload_max_filesize setting in php.ini';
27 break;

28 case 2:

29 print 'The file exceeds the MAX_FILE_SIZE setting in the HTML form';
30 break;

31 case 3:

32 print 'The file was only partially uploaded';

33 break;

34 case 4:

35 print 'No file was uploaded';

36 break;

37 case 6:

38 print 'The temporary folder does not exist.';

39 break;

40 default:

41 print 'Something unforeseen happened.';

42 break;

43 }

44

45 print '.</p>'; // Complete the paragraph.

46

47 } // End of move_uploaded_file() IF.

48

49 } // End of submission IF.

50

51 // Leave PHP and display the form:

52 7>

53

54 <form action="upload_file.php" enctype="multipart/form-data" method="post">
55 <p>Upload a file using this form:</p>

56 <input type="hidden" name="MAX_FILE_SIZE" value="30000" />
57 <p><input type="file" name="thefile" /></p>

58 <p><input type="submit" name="submit" value="Upload This File" /></p>
59 <input type="hidden" name="submitted" value="true" />

60 </form>

61

62 </body>

63 </html>

320

Files and Directories

2.

4,

Create a section of PHP code:
<?php // Script 11.4 - upload_file.
php

Check whether the form has been
submitted:

if (isset($_POST['submitted'])) {
Once again, this script both displays and
handles the HTML form. If it has been
submitted, the uploaded file should be
addressed.

Attempt to move the uploaded file to its
final destination:

if (move_uploaded_file ($_FILES
['thefile']["tmp_name'],
"../uploads/{$_FILES['thefile']
['name']13}")) {
The move_uploaded_file() function
attempts to move the uploaded file
(identified by $_FILES['thefile']
['tmp_name']) to its new location
(../uploads/{$_FILES['thefile']
["name']}). The location is the uploads
directory, which is located in the folder
above the one this script is in. The file's
name will be the same as it was on the
user’s computer.

Placing this function as a condition in an
if statement makes it easy to respond
based on whether the move worked.

Print messages indicating the success of
the operation:

print '<p>Your file has been
uploaded.</p>";
} else { // Problem!
print '<p style="color: red;">Your
file could not be uploaded

because: ';

The first print() statement is executed
if the move worked. The else applies if it
didn’t work, in which case an error mes-
sage is begun. This message will be made
more explicit in Step 6.

continues on next page

321

SavoidM 3114 ONITANVH

HANDLING FILE UPLOADS

Chapter 11

6. Print out the error message if the move
didn’t work:

switch ($_FILES['thefile']['error']) {
case 1:
print 'The file exceeds the
upload_max_filesize setting
in php.ini';
break;
case 2:

print 'The file exceeds the
MAX_FILE_SIZE setting in the
HTML form';

break;
case 3:
print 'The file was only
partially uploaded';
break;
case 4:
print 'No file was uploaded';
break;
case 6:
print 'The temporary folder
does not exist.';
break;
default:
print 'Something unforeseen
happened. ';
break;
3
If a move doesn’t work, the $_FILES
["thefile']['error'] variable contains
anumber indicating the appropriate
error message. By using this in a switch
conditional, the PHP script can print out
the appropriate error message.
You wouldn't normally place something
like this is a public site (it’s a little too
much information), but it’s exceptionally
good for helping you to debug a problem.

322

Files and Directories

Configuring PHP for File Uploads

In order for file uploading to work, a num-
ber of settings in your php. ini configura-
tion file must be set. These may or may not
be enabled in your configuration, so you
should check them by viewing the php.

ini file or running a phpinfo() script.

For starters, file_uploads must be on.
Second, the upload_tmp_dir value must
be set to a directory on the server where
PHP can place files (in other words, it
must exist and be modifiable by the Web
server). If this setting has no value, that's
probably fine (meaning that a hidden
directory created expressly for purposes
such as these will be used).

The upload_max_filesize and post_
max_size settings dictate how large a file
can be sent. Whereas the MAX_FILE_SIZE
hidden form input is a recommendation
to the Web browser, these two settings
control whether the file is uploaded.

Finally, if really large files will be uploaded
(many megabytes or larger), you may
need to increase the memory_limit and
max_execution_time settings to give PHP
the time and the resources to do what it
needs to do.

7. Complete the error message, and close

both conditionals:
print '.</p>"; // Complete the
paragraph.
} // End of move_uploaded_file()
IF.

} // End of submission IF.

. Exit out of PHP and create the HTML

form:
7>

<form action="upload_file.php"
enctype="multipart/form-data"
method="post">

<p>Upload a file using this
form:</p>
<input type="hidden" name="MAX_
FILE_SIZE" value="30000" />
<p><input type="file" name=
"thefile" /></p>
<p><input type="submit" name=
"submit" value="Upload This
File" /></p>
<input type="hidden" name=
"submitted" value="true" />
</form>
The HTML form is simple (Figure 11.16),
containing only two visible elements: a
file input type and a submit button. It dif-
fers from other HTML forms in this book
in that it uses the enctype attribute and
aMAX_FILE_SIZE hidden input type. The
other hidden input is used to trigger the
handling of the form.
Be careful when giving your file input
aname, because this value must exactly
match the index used in the $_FILES
variable. Here, you use a generic thefile.

. Complete the HTML page:

</body>
</html>

continues on next page

323

SavoidM 3114 ONITANVH

HANDLING FILE UPLOADS

Chapter 11

10. Save the page asupload_file.php, place
it in the proper directory for your PHP-
enabled server relative to the uploads
directory (see Figure 11.17), and test it in
your Web browser (Figures 11.18,11.19,
and 11.20).

Only files smaller than about 30 KB
should be allowed, thanks to the
MAX_FILE_SIZE restriction.

11. Check the uploads directory to ensure
that the file was placed there.

v Tips

B Ifthe file couldn't be moved and a permis-
sions denied error is shown, check the
permissions on the uploads directory.
Then check that the path to the directory
used in the script is correct and that there
are no spelling errors.

B Asyou might discover, files uploaded
through the Web browser are owned (in
terms of permissions) by the Web server
application.

B From a security standpoint, it’s better to
rename an uploaded file. To do so, you'll
need to devise a system that generates a
new, unique filename and stores both the
original and new filenames in a text file or
adatabase.

B A script can handle multiple file uploads
as long as they have different names. In
such a case, you need only one MAX_FILE_
SIZE hidden input. In the PHP script,
youd apply the move_uploaded_file()
function to $_FILES['filenamel'],
$_FILES['filename2'], and so on.

B You can limit a file upload to a specific
size or type by referencing the appropriate
index (for example, $_FILES['thefile']
['size'])in your PHP script (after the file
has been uploaded).

B Useunlink() to delete a file without
moving or copying it.

B You can use the copy() function to make
a copy of a file on the server.

%) Upload a File - Mozilla Firefox [|[0][X]
File Edit \Mew History Bookmarks Tools Help

| |j |http:,I',I'Il:ucalhost:SDDD,I'upIDad_File.php ﬁ '|

Tpload a file usimng this form:

|\\.PSF\.HDme\DesktDp'\,|[Browse.. J

Upload This File

Figure 11.18 Select a file on your computer to upload.

©) Upload a File - Mozilla Firefox (= |[B][X]
File Edit View History Bookmarks Tools Help

| |j |http:Il'll'localhost:SDDD,I'upIDad_File.php ﬁ '|

Tour file has been uploaded.

Tpload a file using this form:

| |[Browse...]

Upload This File

Figure 11.19 If the file was uploaded and moved
successfully, a message is printed and the form is
displayed again.

e Upload a File =

Your file could not be uploaded because: The file exceeds
the MAX_FILE_ SIZE setting in the HTML form.

Upload a file using this form:

Upload This File

Figure 11.20 If a problem occurred, the script
indicates the cause.

324

Files and Directories

©) Directory Contents - Mozilla Firefox |._||E||§|
File Edit ‘iew History Bookmarks Tools Help

I: |j |http:,l',l'localhost:BDDD,I'Iist_dir.php ﬁ '|

Directories

s chl
e ch2
® ch?
® templates

Files
Name Size Last IModified
Thumbs. db 5120 bytes October 9, 2008

add_quote php 1666 bytes October 27, 2008
lList dir.php 1492 bytes October 28, 2008
phpinfo. php 19 bytes February 24, 2003
upload_file php 1886 bytes October 28, 2008
view_quote php 747 bytes October 23, 2008

Figure 11.21 The list_dir.php script shows
the contents of a directory. The top part lists the
subfolders, and the bottom table lists the files.

Navigating Directories

The previous PHP scripts worked with files,
but you can also do many things with direc-
tories using PHP. In this example, you'll write
a script that lists a directory’s contents, but
first you'll need to understand the usage and
syntax of many of the functions you'll use.

To find all of the contents of a directory,
the easiest option is to use the scandir()
function:

$stuff = scandir('dirname');

This function, added in PHP 5, returns an
array of every item—directory or file—found
within the given directory.

While youre working with files, you'll use the
filesize() function in this example; it deter-
mines how large a file is in bytes. This value
can be assigned to a variable or be printed:

$number = filesize('filename');

Similarly, the filemtime() function retrieves
the modification time of a file. It returns a
timestamp, which can be formatted using the
date() function.

Finally, PHP includes several functions

that identify attributes. This chapter has
already mentioned is_writable() and
is_readable(), but there are also is_dir()
and is_file(). They return TRUE if the item
in question is a directory or a file, respectively.

You'll put all of these capabilities together
into one page, which will constitute a Web-
based control panel for viewing a directory’s
contents (Figure 11.21).

325

SINROLIIAIQ ONILVIOIAVN

NAVIGATING DIRECTORIES

Chapter 11

To create the directory control panel:

1. Create anew PHP document in your text
editor or IDE (Script 11.5):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Directory Contents</title>
</head>
<body>

Script 11.5 This script displays the contents of a directory. First the subdirectories are listed, followed by the files
(with their sizes and modification dates) in a table.

eoceoe =) Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Directory Contents</title>

7 </head>

8 <body>

9 <?php // Script 11.5 - list_dir.php

10 /* This script lists the directories and files in a directory. */

12 // Set the time zone:
13 date_default_timezone_set('America/New_York');

15 // Set the directory name and scan it:
16 $search_dir = '.";
17 $contents = scandir($search_dir);

19 // List the directories first...
20 // Print a caption and start a list:
21 print '<h2>Directories</h2>

22 ';

23 foreach ($contents as $item) {

24 if ((is_dir($item)) AND (substr($item, 0, 1) !='.")) {
25 print "$item</1i>\n";

26 }

27 }

28

(script continues on next page)

326

Files and Directories

2. Begin the PHP code and set the time zone:
<?php // Script 11.5 - list_dir.php
date_default_timezone_set('America/

New_York');
Because this script will make use of the
date() function, it needs to establish the
time zone once. See Chapter 8, “Creating
Web Applications; for more and for the
reference in the PHP manual where you
can find your time zone.

continues on next page

Script 11.5 continued

eoce = Script
29 print '"; // Close the list.

30

31 // Create a table header:

32 print '<hr /><h2>Files</h2>

33 <table cellpadding="2" cellspacing="2" align="left">
34 <tr>

35 <td>Name</td>

36 <td>Size</td>

37 <td>Last Modified</td>

38 </tr>'y

39

40 // List the files:

41 foreach ($contents as $item) {

42 if ((is_file($item)) AND (substr($item, 0, 1) !='.")) {
43

44 // Get the file size:

45 $fs = filesize($item);

46

47 // Get the file's modification date:

48 $1lm = date('F j, Y', filemtime($item));
49

50 // Print the information:

51 print "<tr>

52 <td>$item</td>

53 <td>$fs bytes</td>

54 <td>$1m</td>

55 </tr>\n";

56

57 } // Close the IF.

58

59 } // Close the FOREACH.

60

61 print '</table>'; // Close the HTML table.

62

63 7>

64 </body>

65 </html>

327

SINROLIIAIQ ONILVIOIAVN

NAVIGATING DIRECTORIES

Chapter 11

3.

Identify the directory to be opened, and
scan in its contents:

$search_dir = '.";
$contents = scandir($search_dir);

By establishing this value as a variable at
the top of the PHP script, it will be easy

to find and change as needed. Here you
use the period to refer to the current
directory. You could also use an absolute
path to another directory (/Users/larry/
Documents or C:\\myfiles\\directory)
or arelative path (. ./myfiles), as long as
PHP has permission to read the named
directory.

The second line scans in the directory’s
contents and assigns them as an array to
the variable $contents.

List the subdirectories of this directory:
print '<h2>Directories</h2>
";
foreach ($contents as $item) {
if ((is_dir($item)) AND
(substr($item, 0, 1) !'= ".")) {

print "$item</1i>\n";

}

This foreach loop accesses every item in
the array, assigning each one to the $item
variable. You first want to list every direc-
tory, so you use the is_dir() function to
confirm the item’s type. Then you check
that it isn't the current directory (marked
by a single period on Unix systems) or
the parent directory (marked by a double
period on Unix systems). If this condi-
tional is TRUE, then the item’s name is
printed out, within list item tags, followed
by a newline (to make for neater HTML
source code).

Close the list:
print '";

328

Files and Directories

6.

Create a new heading, and start a table for
the files:

print '<hr /><h2>Files</h2>

<table cellpadding="2" cellspacing=
"2" align="left">

<tr>

<td>Name</td>

<td>Size</td>

<td>Last Modified</td>

</tr>";

The script also displays the files’ sizes
and modification dates. To make this
look nicer, the results are placed in an
HTML table.

Begin looping through the files in this
directory:
foreach ($contents as $item) {
if C (is_file($item)) AND
(substr($item, @0, 1) '= '.")) {
Another foreach loop is used to go
through the directory contents again.
This time, the conditional only wants
items that are files (but not hidden files
that begin with a single period).
Calculate the file’s size and modification
date, and then print out the information:
$fs = filesize($item);
$1lm = date('F j, Y', filemtime
($item));
print "<tr>
<td>$item</td>
<td>$fs bytes</td>
<td>$1m</td>
</tr>\n";

The first line calls the filesize() func-
tion to retrieve the file's size in bytes. The
second line calls the filemtime() func-
tion, which returns a timestamp of the
file's modification time. This is then fed

continues on next page

329

SINROLIIAIQ ONILVIOIAVN

NAVIGATING DIRECTORIES

Chapter 11

©

10.

11

12

v

into the date() function, along with the
proper formatting, to return a string like
November 24, 2008. Finally, these two
items and the file's name are printed in
the appropriate columns of the table.

Complete the conditional and the loop:
}
}

Close the table:
print '</table>';

Complete the PHP code and the
HTML page:

7>

</body>

</html>

Save the file as list_dir.php, place
it in the proper directory for your
PHP-enabled server, and test it in
your Web browser (Figure 11.21).

Tips

Notice that you need to use double back-
slashes to create absolute path names

on a Windows server. This is necessary
because the single backslash, used in
Windows path names, is the escape char-
acter. So, it must be escaped to be taken
literally.

The glob() function lets you search a
directory for files whose name matches
a pattern (like *jpg or filename*doc).

Other file functions you might appreciate
include fileperms(), which returns the
file's permissions; fileatime(), which
returns the last time a file was accessed;
and fileowner(), which returns the user
who owns the file.

To find out about other file and directory
functions, look in the PHP manual under
Directories and Filesystem.

330

Files and Directories

Creating Directories

Understanding how to read from and write
to files on the server is only part of the data
storage process. It's likely you'll also want to
use directories for this purpose as well.

The command for creating a directory in
PHP is

mkdir('directory_name', permissions);

The directory name is the name of the direc-
tory to be created. This can also be a path:

mkdir('C:\\inetpub\\users\\eleanor');

On Windows servers, the permissions are
ignored and therefore not required (as in the
preceding example). On other servers, the
permissions are 0777 by default (see the sec-
tion “File Permissions” of this chapter to learn
what those numbers mean).

With this in mind, let’s create a script that
makes a new directory for a user when the
user registers. This script also records the user-
name and password to a text file, so that the
user can be validated when logging in. You'll
begin by creating the parent directory (which
must be writable so that PHP can create sub-
directories in it) and the users. txt data file.

To create the directory and the
data file:

1. Create a new folder called users, located
outside of the Web directory root.

It could be created in the same location
as the uploads folder made earlier (see
Figure 11.17).

2. Using the steps outlined in the first sec-
tion of this chapter, set the permissions so
that everyone can write to, read from, and
search (0777 in Unix terms) the directory.
If youre running Windows, this step will
most likely not be necessary.

continues on next page

331

SIRNOLOFVIJ ONILLYVIY)

CREATING DIRECTORIES

Chapter 11

3.

4,

In your text editor, create a new, blank
document.

Save this file in the users directory with
the name users. txt.

Again using the steps outlined earlier

in the chapter, set the permissions on
users.txt so that everyone can write

to and read from the file (0666 in Unix
terms).

Again, this will probably not be necessary
if youre running Windows on your PHP
server.

To create the registration script:

1.

Begin a new PHP document in your text
editor or IDE (Script 11.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Register</title>

<style type="text/css"
media="screen">

.error { color: red; }

</style>
</head>
<body>
In the page’s head, a CSS class is defined
that will be used to format errors.
Begin the PHP code:
<?php // Script 11.6 - register.php

continues on page 334

332

Files and Directories

Script 11.6 The register.php script serves two purposes: it records the user’s information in a text file and creates
a new directory for that user’s stuff.

eee = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Register</title>

7 <style type="text/css" media="screen">

8 .error { color: red; }

9 </style>

10 </head>

11 <body>

12 <?php // Script 11.6 - register.php

13 /* This script registers a user by storing their information in a text file and creating a
directory for them. */

14

15 if (isset($_POST['submitted'])) { // Handle the form.

16

17 $problem = FALSE; // No problems so far.

18

19 // Check for each value...

20 if Cempty($_POST['username'])) {

21 $problem = TRUE;

22 print '<p class="error">Please enter a username!</p>";

23 }

24

25 if (empty($_POST['passwordl'])) {

26 $problem = TRUE;

27 print '<p class="error">Please enter a password!</p>";

28 }

29

30 if ($_POST['passwordl'] != $_POST['password2']) {

31 $problem = TRUE;

32 print '<p class="error">Your password did not match your confirmed password!</p>";

33 }

34

35 if (!$problem) { // If there weren't any problems...

36

37 if ($fp = fopen ('../users/users.txt', 'ab')) { // Open the file.

38

39 // Set the encoding:

40 stream_encoding($fp, 'utf-8');

41

42 // Create the data to be written:

43 $dir = time() . rand(@, 4596);

44 $data = $_POST['username'] . "\t" . md5Ctrim($_POST['passwordl'])) . "\t" . $dir

"\n"; // \r\n on Windows
45

(script continues on next page)

333

SIRNOLOFVIJ ONILLYVIY)

CREATING DIRECTORIES

Chapter 11

3. Check whether the form has been
submitted:
if (isset($_POST['submitted'])) {
Once again, this page both displays and
handles the HTML form. This is accom-
plished using a conditional that checks
for the value of the $_POST['submitted']
variable.

4. Validate the registration information:
$problem = FALSE;
if (empty($_POST['username'])) {

$problem = TRUE;

Script 11.6 continued

eoeoe = Seript

46 // Write the data and close the file:

47 fwrite ($fp, $data);

48 fclose ($fp);

49

50 // Create the directory:

51 mkdir ("../users/$dir");

52

53 // Print a message:

54 print '<p>You are now registered!</p>';

55

56 } else { // Couldn't write to the file.

57 print '<p class="error">You could not be registered due to a system error.</p>"';
58 }

59

60 } else { // Forgot a field.

61 print '<p class="error">Please go back and try again!</p>";
62 }

63

64 1} else { // Display the form.

65

66 // Leave PHP and display the form:

67 7>

68

69 <form action="register.php" method="post">

70 <p>Username: <input type="text" name="username" size="20" /></p>
71 <p>Password: <input type="password" name="passwordl" size="20" /></p>
72 <p>Confirm Password: <input type="password" name="password2" size="20" /></p>

73 <input type="submit" name="submit" value="Register" />

74 <input type="hidden" name="submitted" value="true" />

75 </form>

76 <?php } // End of submission IF. ?>

77 </body>

78 </html>

334

Files and Directories

print '<p class="error">Please
enter a username!</p>";

}
if (empty($_POST['passwordl'])) {
$problem = TRUE;
print '<p class="error">Please
enter a password!</p>";

}
if ($_POST['passwordl'] !=
$_POST['password2']) {
$problem = TRUE;
print '<p class="error">Your
password did not match your
confirmed password!</p>"';

}

The registration form is a simpler version
of earlier registration forms developed in
this book. The same validation process
you previously developed is used to check
the submitted username and passwords.
The $problemvariable is used as a flag to
indicate whether a problem occurred.

. Check for problems:

if (!$problem) {

Again, the $problem variable lets you
know if it’s okay to register the user. If no
problems occurred, it’s safe to continue.

. Attempt to open the users.txt file and
set the encoding;
if ($fp = fopen ('../users/users.
txt', 'ab")) {
stream_encoding($fp, 'utf-8');
Like before, the data file is opened as
part of a conditional, so that the script
can respond to its success. The file being
opened is in the users directory, which is
in the directory above this script. The file
is opened using the ab mode, appending
data to the file.

Next, the encoding is set as this page
uses UTF-8.

continues on next page

335

SIRNOLOFVIJ ONILLYVIY)

CREATING DIRECTORIES

Chapter 11

7.

9.

Create the data to be written to the file,
and then write it:
$dir = time() . rand(@, 4596);
$data = $_POST['username'] . "\t"

. md5Ctrim($_POST['passwordl']))

L "\t" . $dir . "\n";
fwrite ($fp, $data);
fclose ($fp);
The name of the directory being created is
anumber based on the time the user reg-
istered and a random value. This system
helps to guarantee that the directory cre-
ated is both unique and has a valid name.
Instead of storing a single string as you pre-
viously have, this script stores three sepa-
rate pieces of information: the user’s name;
an encrypted version of the password
(using the md5() function, see the first tip);
and the directory name, created in the pre-
cedingline. The password is trimmed first,
to get rid of any extraneous spaces.

To distinguish between the pieces of
information, you insert a tab (created
using the \t code). A newline is used to
mark the end of the line (Windows users
should use \r\n instead).

Create the user’s directory, and print a

message:

mkdir ("../users/$dir");

print '<p>You are now registered!
</p>";

The mkdir() function creates the direc-

toryin the users directory. The directory is

named whatever random number was gen-

erated earlier and has open permissions.

Complete the conditionals:
1 else {
print '<p class="error">You
could not be registered due
to a system error.</p>";

336

Files and Directories

} else {

print '<p class="error">Please go
back and try again!</p>";

}

The first else completes the conditional
if the script couldn't open the users. txt
file for writing. The second else com-
pletes the conditional if the user failed to
complete the form properly.

10. Add an else clause to the main condi-
tional, and exit out of PHP:
} else {
7>
Unlike the previous examples in this
chapter, this PHP script first displays
the form and then handles it. Whereas
the other scripts would then display
the form again, this one does not, as the
form creation is part of an else state-
ment. Because the rest of the page is
just HTML, you exit out of PHP to
create the form.

11. Display the HTML form:

<form action="register.php"
method="post">

<p>Username: <input type="text"
name="username" size="20" />
</p>

<p>Password: <input type=
"password" name="passwordl"
size="20" /></p>

<p>Confirm Password: <input
type="password" name=
"password2" size="20" />
</p>

<input type="submit" name=
"submit" value="Register" />

<input type="hidden" name=
"submitted" value="true" />

</form>

continues on next page

337

SIRNOLOFVIJ ONILLYVIY)

CREATING DIRECTORIES

Chapter 11

12. Complete the main conditional:
<?php } // End of submission IF. 7>

This final closing curly brace closes the
main submit conditional. For it to work,
anew PHP section must be created first.

13. Complete the HTML page:
</body>
</html>

14. Save the file as register.php, place it
in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figures 11.22 and 11.23).

15. Ifyou want, open the users. txt file
in your text editor to see its contents
(Figure 11.24).

v Tips

B Themd5() function creates a hash: a
mathematically calculated representation
of a string, So this script doesn't actually
store the password but a representation
of that password (in theory, no two strings
would have the same md5() value). You'll
soon see how this is used by a login script.

B You can also ensure that the page worked
as it should by looking in the users direc-
tory for the new subdirectories.

B The rmdir() function deletes an existing
directory, assuming PHP has permission
to do so.

B At some point, you may want to create a
system to guarantee unique usernames.
The process for doing so is simple enough:
Before you attempt to create the directory,
use PHP to check your list of existing user-
names for a match to the just-registered
name. If no match is found, the new name
is acceptable. If the username is already in
use, then PHP can create an error message
requesting a new username.

((=1E3

File Edt ‘Wew History Bookmarks Tools Help

©J Register - Mozilla Firefox

I: |j |http:,l',l'localhost:BDUD,I'register.php ﬁ::f '|

Tsernatme: |Iarry |

Password: |uu |

Confirm Password: |---- |

Figure 11.22 The registration form is quite basic but
serves its purpose.

S=1E

File Edit ‘iew History Bookmarks Tools Help

©J Register - Mozilla Firefox

I: |j |http:,I',I'Iocalhost:SDDD,I'register.|:-h|:- ‘ﬂf’ '|

Tou are now registered!

Figure 11.23 This is what the user sees if the
registration process worked.

¥
[3.. users.txt [4.. register.php

o 10 z0 30 40 50
L i L T L T L T L T L

:
1 larry S5f4dccibhSaa7e5delds327dehs8820f00 12252433813643
2 usernawe 1alde91c907325c69271ddf0c944he?2 12252439052116
3|

Figure 11.24 The users. txt file lists three tab-
delineated fields of information: the username,
a scrambled version of the user’s password, and
their associated directory name.

338

Files and Directories

Reading Files
Incrementally

In the view_quote.php script (Script 11.3),

an entire file was read into an array using the
file() function. But what if you want to read
in only a little of the file at a time? Then you
need to use the fgets() function.

The fgets() function returns a string of a
certain length. It's most often placed in a
while loop that uses the feof() function
to make sure the end of the file hasn't been
reached. For example:

$fp = fopen('filename', 'rb');
while (!feof($fp)) {

$string = fgets($fp, 1024);
}
fclose ($fp);

In this example, the fgets() function returns
1023 bytes of data at a time (the 1024 indi-
cated length minus 1) until it reaches the end
of the file. The length argument is optional,
but if present, it should be a number larger
than a single line of text in the file.

In an example where the data is stored in

a delineated format (commonly using a
comma, hence a CSV—comma-separated
values—format), you can use the fgetcsv()
function instead. It breaks the string into
parts, using the marked separator, and
returns an array:

$array = fgetcsv($fp, length, delimiter);
$array = fgetcsv($fp, 1024);

Again, the preceding function call returns
1023 bytes of data, but it breaks the string
into an array using the default delimiter—a
comma—as an indicator of where to make
elements. This function is the equivalent of
using the fgets() and explode() functions
together.

continues on next page

339

ATTVLNIWIIIN] S3T14 ONIAVIY

READING FILES INCREMENTALLY

Chapter 11

Finally, because these functions rely upon
identifying the end of a line, it's a good extra
precaution to enable PHP’s auto_detect_
line_endings setting. You can do so using
the ini_set() function:

ini_set('auto_detect_line_endings', 1);

As an example, let’s create a login script
that uses the users. txt file created in the
preceding example. It will continue to read
a file until a matching username/password
combination has been found.

To read a file incrementally:

1. Begin anew PHP document in your text
editor or IDE (Script 11.7):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Login</title>
</head>
<body>

2. Create the PHP section:
<?php // Script 11.7 - login.php
3. Check whether the form has been
submitted:
if (isset($_POST['submitted'])) {

4. Create a dummy variable to use as a flag:
$loggedin = FALSE;
The $1loggedin variable is used to indicate
whether the user entered the correct
username/password combination. When
the script first starts, it's assumed that
they have not.

340

Files and Directories

5. Open the file for reading;
ini_set('auto_detect_line_endings', 1);
$fp = fopen('../users/users.txt’',

'rb");
Unlike the file() function, the
fgetcsv() function requires a file pointer.
Therefore, the users. txt file must be
opened with the fopen() function, using
the appropriate mode. Here, that mode is
rb, meaning the file should be opened for
reading in a binary safe mode.

First, though, just to be safe, PHP’s
auto_detect_line_encodings setting
is enabled.

continues on next page

Script 11.7 The login.php script uses the information stored in users.txt (created by Script 11.6) to validate a user.

eee | Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Login</title>

7 </head>

8 <body>

9 <?php // Script 11.7 - login.php

10 /* This script logs a user in by check the stored values in text file. */
11

12 if (isset($_POST['submitted'])) { // Handle the form.

13

14 $loggedin = FALSE; // Not currently logged in.

15

16 // Enable auto_detect_line_settings:

17 ini_set('auto_detect_line_endings', 1);

18

19 // Open the file:

20 $fp = fopen('../users/users.txt', 'rb');

21

22 // Loop through the file:

23 while ($line = fgetcsv($fp, 100, "\t")) {

24

25 // Check the file data against the submitted data:

26 if (($1ine[@] == $_POST['username']) AND ($line[1] == md5(trim($_POST['password']1)))) {
27

28 $loggedin = TRUE; // Correct username/password combination.

29

(script continues on next page)

341

ATTVLNIWIIIN] S3T14 ONIAVIY

READING FILES INCREMENTALLY

Chapter 11

6. Loop through each line of the file:
while ($line = fgetcsv($fp, 100,

")

This while loop reads another 100 bytes
or one line of the file—whichever comes
first—with each iteration. The data being
read is broken into an array, using the tab
to indicate the separate elements.

Because the users. txt file stores its data
in the format username tab password tab
directory newline, the $1ine array contains
three elements indexed at @ (username),

1 (password), and 2 (directory).

Script 11.7 continued

eoeoe = Seript

30 // Stop looping through the file:

31 break;

32

33 } // End of IF.

34

35 } // End of WHILE.

36

37 fclose($fp); // Close the file.

38

39 // Print a message:

40 if ($loggedin) {

41 print '<p>You are now logged in.</p>";

42 } else {

43 print '<p style="color: red;">The username and password you entered do not match those on
file.</p>";

44 }

45

46 } else { // Display the form.

47

48 // Leave PHP and display the form:

49 7>

50

51 <form action="login.php" method="post">

52 <p>Username: <input type="text" name="username" size="20" /></p>

53 <p>Password: <input type="password" name="passwordl" size="20" /></p>

54 <input type="submit" name="submit" value="Login" />

55 <input type="hidden" name="submitted" value="true" />

56 </form>

57 <?php } // End of submission IF. 7>

58 </body>

59 </html>

342

Files and Directories

7.

10.

Check the submitted values against the
retrieved values:
if (($1ine[@] == $_POST
['username']) AND ($line[1] ==
md5Ctrim($_POST['password'])))) {
This two-part conditional checks the
submitted username against the stored
username ($1ine[@]) and checks the
submitted password against the stored
password ($1ine[1]). However, because
the stored password was scrambled
using md5(), apply md5() to the submit-
ted value and then make the comparison.

If a match was found, set $1oggedin to
TRUE and exit the while loop:
$loggedin = TRUE;

break;

If the conditional is TRUE, the submitted
username and password match those
on file. In this case, the $1oggedin flag is
set to TRUE, and the break statement is
used to exit the while loop. The benefit
of this system is that only as much of the
file is read as is required to find a match.

Close the conditional, the while loop,
and the file:

3
}
fclose ($fp);

Print a message to the user:
if ($loggedin) {

print '<p>You are now logged
in.</p>";
} else {

print '<p style="color: red;">The
username and password you entered
do not match those on file.</p>";

}

continues on next page

343

ATTVLNIWIIIN] S3T14 ONIAVIY

READING FILES INCREMENTALLY

Chapter 11

Using the $1oggedin flag, the script can
now say whether the user is “logged in”
You could add some functionality to this
process by storing the user’s directory

in a session and then sending them to a
file-upload page.

11

Continue the main submit conditional,
and exit PHP:

1 else {

7>

12. Create the HTML form:
<form action="login.php"
method="post">
<p>Username: <input type="text"
name="username" size="20" />
</p>
<p>Password: <input type=
"password" name="passwordl"
size="20" /></p>
<input type="submit" name=
"submit" value="Login" />
<input type="hidden" name=
"submitted" value="true" />
</form>

13. Return to PHP to complete the main
conditional:

<?php } // End of submission IF. ?>

14. Finish the HTML page:
</body>

</html>

15. Save the file as Login.php, place it in the
proper directory for your PHP-enabled
server, and test it in your Web browser
(Figures 11.25,11.26, and 11.27).

v Tips

B Asof PHP 4.2, the length argument in
fgets() is optional and defaults to 1 KB
(1024 bytes). As of PHP 4.3, the length
argument defaults so that it automatically
returns all the data until the end of the line.

©3 Login - Mozilla Firefox
File Edit View History Bookmarks Tools Help

I: |j |http:,l',l'localhost:SEIDD,I'Iogin.php {]” '|

Username: |Iarry |

Password: |uuuu |

Figure 11.25 The login form takes a username and
password.

©3 Login - Mozilla Firefox

File Edit Wiew History Eookmarks Tools Help

I: |j |http:,l',l'localhost:BDDD,I'Iogin.php ‘ﬂi’ -

Tou are now logged m.

Figure 11.26 If the submitted username and password
match those previously recorded, the user sees this
message.

) Login - Mozilla Firefox

File Edit Wiew History Eookmarks Tools Help

(|j |http:,l',l'localhost:BDDD,I'Iogin.php ﬁ '|

The username and password you entered do not
match those on file.

Figure 11.27 The result if the user submits a
username and password combination that doesn’t
match the values previously recorded.

B As of PHP 4.3, the fgetcsv() function
takes another optional argument: the
string being used to enclose the elements.

B Ifalineisblank, fgetcsv() returns an
array containing a single null value.

344

INTRO TO DATABASES

Strange as it may sound, the Internet wouldn't
be where it is today if not for the existence of
databases. In fact, PHP probably wouldn't be
as popular or as useful if not for its built-in
support for numerous types of databases.

There are currently many existing database
applications or Database Management
Systems (DBMSs), which function on differ-
ent platforms. On the high end there’s Oracle,
generally considered one of the best DBMSs,
but its price puts it out of the running for all
but the largest and best-financed applica-
tions. For Windows and Windows NT, you'll
often encounter Access or SQL Server, both
of which are fine but not cross-platform
compliant. For basic needs, there’s the open-
source SQLite, which is an excellent product.

This chapter will use MySQL as the example
DBMS. Although MySQL—which is available
for most platforms—may not be as powerful
as other database servers, it has enough speed
and functionality for most purposes. And its
price—free for most uses—makes it the most
common choice for Web development.

This chapter shows you how to develop a sim-
ple database that creates a blog (a Web-based
journal). Although you'll learn enough here to
get started, you may want to visit Appendix B,
“Resources and Next Steps,” once youve
finished this chapter to find some references
where you can learn more about the topic.

345

S3Ssvaviv(q Ol O¥LN]|

INTRODUCTION TO SQL

Chapter 12

Introduction to SQL

A database is a collection of tables (tables
being made up of columns and rows) that
stores information. Databases are created,
updated, and read using SQL (Structured
Query Language). There are surprisingly few
commands in SQL (Table 12.1 lists the six
most important), which is both a blessing
and a curse.

SQL was designed to be written a lot like the
English language, which makes it very user
friendly; but it does take some thought to cre-
ate more elaborate SQL statements with only
the handful of available terms. In this chapter
youll learn how to define all of the funda-
mental SQL statements (also called queries).

For people new to PHP, confusion can stem
from PHP’s relationship to HTML (i.e., PHP
can be used to generate HTML but PHP code
is never executed in the Web browser). When
you incorporate a database, the relation-
ships can become even fuzzier. The process
is actually quite simple: PHP is used to send
SQL statements to the database application,
where they are executed. The result of the
execution—the creation of a table, the inser-
tion of a record, the retrieval of some records,
or even an error—is then returned by the
database to the PHP script (Figure 12.1).

With that in mind, PHP’s mysql_query()
function will be the most-used tool in this
chapter. It sends an SQL command to MySQL:

$result = mysql_query(SQL statement);

I start this chapter with all this prologue
because the addition of SQL and MySQL to
the Web development process will compli-
cate things. When problems occur—and
undoubtedly they will—you'll need to know
how best to debug them.

The best way to debug problems that occur is
to execute the SQL command using another

Table 12.1
Common SQL Commands
ComMmAND PURPOSE
CREATE Creates a database or table
DELETE Deletes records from a table
DROP Deletes a database or table
INSERT Adds records to a table
SELECT Retrieves records from a table
UPDATE Updates records in a table

Database application

1. SQL query ‘
2. Result of execution %
Figure 12.1 PHP will be used to send an SQL statement

to MySQL. MySQL will execute the statement and
return the result to the PHP script.

PHP script

MySQL Support in PHP

Support for the MySQL database server
has to be built into PHP in order for you

to use PHP’s MySQL-specific functions. In
earlier versions of PHP, support for MySQL
was part of the software by default. As of
PHP 5, that’s no longer the case.

For users of any version of PHP, if you see
an error message saying ... undefined func-
tion mysql_..., this means the version of
PHP youre using doesn't have support for
MySQL. (Or, you misspelled the function
name, which you should also check.)

Enabling support for MySQL takes a little
effort, but it can be done if you have admin-
istrative-level control over your server. For
more information, see the PHP manual.

346

Intro to Databases

o C20) PHP: Visua

Commands end with 3 or a.
Your MySOL connection id is 1868
Server version: 5.8.67 MySOL Community Server (GPL)

Welcome to the MySOL monitor.

Type 'help;' or 'shYofor help. Type '“c' to clear the buffer.

nysgl> [

Figure 12.2 The MySQL monitor comes with the

MySQL database software and can be used to execute

queries without the need for a PHP script.

application. By doing so, you can see if the
problem is an SQL/MySQL one or a PHP one.
Your two best tools in this cause are

L 2

The MySQL client (Figure 12.2), a
command-line tool for interacting with
MySQL

phpMyAdmin (Figure 12.3), a PHP-based
MySQL interface

For a demonstration of using the MySQL
monitor, see Appendix A. For information on
phpMyAdmin, see waw. phpmyadmin.net.

v Tips

Technically, a DBMS, or database applica-
tion, is the software that interfaces with
the database proper. However, most
people use the terms database and DBMS

synonymously.

Lots other applications are available for
interacting with MySQL aside from the
MySQL client and phpMyAdmin. Some are
free, and others cost. A quick search using
Google for MySQL, admin, and your operat-
ing system should turn up some results.

‘it Create new

800 localhost / localhest | phpMyAdmin 3.0.1 [=)
W’ © Server: localhost n
= TSOL _ fFStatus [HCharsets g3Engines gbPrivileges %y @ Zimport
:
 information_schema (17) Acons MysaL
b 22?“' tio) MySQL localhost € Server: Localhost via UNIX socket

B server version: 5.0.67

Please select a database

Interface

| Ccollation =)

MySQL connection collation: | utf8_general_ci

% Language @: | English

L;i

» Gustom color: (7 Reset))
» Font size: 82% E

@& Theme / Style: [Original 4

} Protocol version: 10
» User: root@localhost

MySQL charset: UTF-8 Unicode (uti8)
Web server

» Apache/2.2.9 (Unix} mod_ssl/2.2.9
OpenSSL/0.9.7I DAV/2 PHP/5.2.6 PHP/6.0.0-dev

b MySQL client version: 5.0.51b

» PHP extension: mysql

phpMyAdmin

} Version information: 3.0.1
B Dpocumentation i
B wi
&} official Homepage

» [Changelog] [Subversion] [Lists]

phpMuyAdmin |
b2

Figure 12.3 phpMyAdmin is perhaps the most popular software written in PHP. It provides a Web-based

interface for a MySQL database.

347

7JOS OL NOILDNAOYLN|

www.phpmyadmin.net

CONNECTING TO MYSQL

Chapter 12

Connecting to MySQL

When you worked with text files in Chapter
11, “Files and Directories,” you saw that you
first had to create a file pointer while opening
the file. This pointer then acts as a reference
point to that open file. You use a similar
process when working with databases. First,
you have to establish a connection to the
database server (in this case, MySQL). This
connection is then used as the access point
for any future commands. The syntax for
connecting to a database is

$dbc = mysql_connect(Chostname, username,
password);

The database connection ($dbc) is established
using at least three arguments: the host, which
is almost always localhost; the username; and
the password for that username.

If youre using a database through a hosting
company, the company will most likely pro-
vide you with the username and password
to use. If youre running MySQL on your own
computer, see Appendix A to learn how you
create a user.

Once youre done working with a database,
it's considered good form to close the con-
nection, just as youd close an open file:

mysql_close();

For the first example of this chapter, you'll
write a simple script that attempts to con-
nect to MySQL. Once you have this connec-
tion working, you can proceed through the
rest of the chapter.

348

Intro to Databases

Script 12.1 Being able to connect to the MySQL
server is the most important step. This script tests
that process.

806 =1 Script
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"
:Z "http://www.w3.0org/TR/xhtml11/DTD/
| xhtmll-transitional.dtd">
:3 <html xmlns="http://www.w3.0rg/1999/
| xhtml" xml:lang="en" lang="en">
:4 <head>
:5 <meta http-equiv="content-type"
: content="text/html; charset=utf-8" />
|6 <title>Connect to MySQL</title>
|7 </head>
|8 <body>
|19 <?php // Script 12.1 - mysql_connect.php
:10 /* This script connects to the MySQL
| server. */
11
12 // Attempt to connect to MySQL and print
out messages:
13 if ($dbc = mysql_connect('localhost’,
'username’, 'password')) {
14
15 print '<p>Successfully connected to
MySQL!</p>";
16
17 mysql_close(); // Close the connection.
18
19 1} else {
20
21 print '<p style="color: red;">Could
not connect to MySQL.</p>";
22
23 %
24
25 7>
26 </body>
27 </html>

To connect to MySQL:

1.

Begin a new PHP document in your text
editor or IDE (Script 12.1).
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Connect to MySQL</title>
</head>
<body>

Start the section of PHP code:
<?php // Script 12.1 -
mysql_connect.php

. Connect to MySQL, and report on the

results:

if ($dbc = mysql_connect('localhost’,

'username', 'password')) {
print '<p>Successfully connected
to MySQL!</p>";
mysql_close();
} else {

print '<p style="color: red;">

Could not connect to MySQL.</p>";

}

By placing the connection attempt as the
condition in an if-else statement, you
make it easy to report on whether the
connection worked.

continues on next page

349

TJOSAW OL ONILDINNO)

CONNECTING TO MYSQL

Chapter 12

This chapter will continue to use
username and password as values. For
your scripts, you'll need to replace these
with the values provided by your Web
host or set them when you add a user
using the steps outlined in Appendix A.
If a connection was established, a positive
message is printed and then the con-
nection is closed. Otherwise, an oppo-
site message is printed, and there is no
need to close the database connection
(because it wasn't opened).

4. Complete the PHP code and the HTML
page:
7>
</body>
</html>

5. Save the file as mysql_connect.php, place
it in the proper directory of your PHP-
enabled computer, and test it in your Web
browser (Figure 12.4).

If you see results like those in Figure 12.5,
double-check the username and pass-
word values. They should match up with
those provided to you by your Web host
or those you used to create the user. You
can always test your connection user-
name and password by using them in the
MySQL client (again, see Appendix A).

If you see call to undefined function mysql_
connect..., your version of PHP doesn't
support MySQL (see the sidebar).

Successfully connected to MySQL!

™ O O Connect to MySQL (5

A

Figure 12.4 If PHP has support for MySQL and the
username/password/host combination you used
was correct, you should see this simple message.

en0o Connect to MySQL

‘Warning: mysql_connect() [function.mysql-connect]:

Access denied for user 'username' @ localhost' (using
password: YES) in /Users/larryullman/Sites
/mysql_test.php on line 13

Could not connect to MySQL.

Figure 12.5 If PHP couldn’t connect to MySQL, you’ll

probably see something like this. The warning
message may or may not appear, depending upon
your error management settings.

350

Intro to Databases

MySQL Extensions

PHP can communicate with MySQL using
two different extensions. The first, used

in this chapter, is the standard MySQL
extension. It has been around for years
and works with all versions of PHP and
MySQL. All of the standard MySQL
extension functions begin with mysql_.

The second extension is called MySQLi
(Improved MySQL Extension). This
extension was added in PHP 5 and can
be used with MySQL 4.1 or greater. These
functions all begin with mysqli_ and take
advantage of some of the added features
in MySQL. If possible, it’s preferable to use
the MySQLi functions, but as the older
extension is more universally enabled,
this book uses it exclusively. See the PHP
manual or my book PHP 6 and MySQL 5
for Dynamic Web Sites: Visual QuickPro
Guide (Peachpit Press, 2007) for details
on the MySQLi extension.

v Tips

B Most of the MySQL-related PHP functions
take an optional argument that is the
database connection ($dbc in this case).
All the examples in this chapter omit this
argument, but you'll frequently see the
functions used with or without it.

B The localhost value is used as the host
name when both the PHP script and
the MySQL database reside on the same
computer. You can use PHP to connect to
a MySQL database running on a remote
server by changing the host name in the
PHP script and creating the proper per-
missions in MySQL.

B PHP has built-in support for most data-
bases, including dBase, FilePro, mSQL,
MySQL, Oracle, PostgreSQL, and Sybase. If
youre using a type of database that doesn't
have direct support—for example, Access
or SQL Server—you'll need to use PHP’s
ODBC (Open Database Connectivity)
functions along with that databases ODBC
drivers to interface with the database.

B The combination of using PHP and
MySQL is so common now that you may
run across terms that identify servers
configured with both PHP and MySQL:
LAMP, MAMP, and WAMP. These stand
for the operating system—Linux, Mac
OS X, or Windows—plus the Apache Web
server, the MySQL DBMS, and PHP.

B Youll be working with MySQL, so all the
functions you use in this chapter are
MySQL specific. For example, to con-
nect to a database in MySQL, the proper
function is mysql_connect(), but if youre
using PostgreSQL, youd instead write pg_
connect(). If you aren't using a MySQL
DBMS, use the PHP manual (available
through www. PHP . net) to find the appro-
priate function names.

351

TJOSAW OL ONILDINNO)

www.PHP.net

MYSQL ERROR HANDLING

Chapter 12

MySQL Error Handling

Before this chapter gets too deep into work-
ing with MySQL, it would be best to discuss
some error-handling techniques up front.
Common errors you'll encounter are

¢ Failure to connect to MySQL
Failure in selecting a database
Inability to run a query

No results being returned by a query

* ¢ o o

Data not being inserted into a table

Experience will teach you why these errors
normally occur, but immediately seeing what
the problem is when running your scripts can
save you much debugging time. To have your
scripts give informative reports about errors
that occur, use the mysql_error() function.
This function returns a textual version of the
error that the MySQL server returned.

Along with this function, you may want to
use some PHP tools for handling errors.
Specifically, the error suppression operator
(@), when used preceding a function name,
suppresses any error messages or warnings
the function might invoke:

@function_name();

Note that this operator doesn't stop the error
from happening, it just prevents the message
from begin immediately displayed. Youd use
it in situations where you intend to handle
the error yourself, should one occur.

352

Intro to Databases

Script 12.2 By adding error control to the script (the
@ symbol and the mysql_error() function), you can
more purposefully address problems that occur.

8Qe = Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

:Z "http://www.w3.0org/TR/xhtml11/DTD/

| xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

| 4 <head>

|5 <meta http-equiv="content-type"

: content="text/html; charset=utf-8" />
|6 <title>Connect to MySQL</title>

|7 </head>

|8 <body>

|9 <?php // Script 12.2 - mysql_connect.php #2
|10 /* This script connects to the MySQL

| server. */

11

12 // Attempt to connect to MySQL and print

out messages:
13 if ($dbc = @mysql_connect('localhost’,
'username’, 'password')) {

14

15 print '<p>Successfully connected to
MySQL!</p>";

16

17 mysql_close(); // Close the connection.

18

19 } else {

20

21 print '<p style="color: red;">Could
not connect to MySQL:
' . mysql_
error() . '.</p>";

22

23 3}

24

25 7>

26 </body>

27 </html>

To use error handling:

1.

2.

3.

Open mysql_connect.php (Script 12.1) in
your text editor or IDE.

Suppress any PHP errors created by

the mysqgl_connect() function by

changing the if conditional as follows

(Script 12.2):

if ($dbc = @mysql_connect
('"localhost', 'username',
"password')) {

Rather than have PHP print out an error

message when the mysql_connect()

function backfires (Figure 12.5), the

message will be suppressed here using

the @ symbol. The errors still occur, but

theyre handled by the change made

in the next step.

Add the mysql_error() function to the
print() statement in the else section:
print '<p style="color: red;">Could
not connect to MySQL:
'
. mysql_error() . '.</p>";
Instead of printing a message or relying
on whatever error PHP kicks out (see
Figure 12.5), the script now prints the
MySQL error within this context. You
accomplish this by printing some HTML
concatenated with the mysql_error()
function.

continues on next page

353

ONITANVH ¥0¥¥T TOSAW

MYSQL ERROR HANDLING

Chapter 12

4.

Save the file and test it again in your Web
browser (Figure 12.6).

If there was a problem, this result now
looks better than Figure 12.5. If the script
connected, the result is like that in
Figure 12.4, because neither of the
error-management tools is involved.

v Tips

In this chapter, error messages are
revealed to assist in the debugging
process. Live Web sites should not have
this level of explicit error messages being
shown to the user.

You can use the @ symbol to suppress
errors, notices, or warnings stemming
from any function, not just a MySQL-
related one. For example:

@include('./filename.php');

In previous editions of this book, I've

also called die(), which is an alias for
exit(), when a connection error occurs.
The thinking is that since a database
connection cannot be made, there’s no
point in continuing. I've omitted its use in
this chapter because it’s just too heavy-
handed and is often misused.

e0o

Could not connect to MySQL:
Access denied for user 'username'@'localhost’
(using password: YES).

Connect to MySQL =

A

Figure 12.6 Using PHP’s error-control functions, you

can adjust how errors are handled.

354

Intro to Databases

Creating and Selecting
a Database

Before a PHP script can interact with a data-
base, the database must first be selected. Of
course, in order to select a database, it must
exist. You can create a database using PHP,
the MySQL client, phpMyAdmin, or any num-
ber of tools, so long as the MySQL hostname/
username/password combination you are
using has permission to do so.

Database permissions are a bit more compli-
cated than file permissions, but you need to
understand this fact: Different types of users
can be assigned different database capabili-
ties. For example, one DBMS user may be
able to create new databases and delete
existing ones (you may have dozens of data-
bases in your DBMS), but a lower-level user
may only be able to create and modify tables
within a single database. The most basic user
may just be able to read from, but not modify,
tables.

If youre using PHP and MySQL for a live,
hosted site, the hosting company will most
likely give you the second type of access—
control over a single database but not

the DBMS itself—and establish the initial
database for you. If youre working on your
own server or have administrative access,
you should have the capability to create new
users and databases.

To create a database with PHP, you use the
mysql_query() function with the CREATE
DATABASE databasename SQL command:

mysql_query(' CREATE DATABASE somedb');

Once you've done this, you can select the
database usingmysql_select_db():

mysql_select_db('somedb');

continues on next page

355

isvavivq v 9NI1D373G ANV SNILVIY)

CREATING AND SELECTING A DATABASE

Chapter 12

Note that you only ever need to create a
database once, but it must always be selected
before any other queries are run on it. In
other words, some developers need to per-
form this first step, but everyone must take
the second step with every PHP script.

In this example, you'll create a new database
and then select it. To repeat, creating a data-
base requires that you have administrator
access. If your Web host restricts your access,
it should create the initial database for you
upon request; you can just write the second
part of this script, which selects the database.

To create and select a database:

1. Openmysql_connect.php (Script 12.2) in
your text editor or IDE.

2. After the first print() statement,
create the new database, if necessary
(Script 12.3):
if (@mysql_query('CREATE DATABASE

myblog")) {

print '<p>The database has been
created!</p>";

} else {

print '<p style="color: red;">
Could not create the database
because:
' . mysqgl_error()
'.</p>"y

}

If you need to create the database, use
this construct to handle the task cleanly
and effectively. The query—CREATE
DATABASE myblog—is run using the mysql_
query() function. The @ symbol is used to
suppress any error messages, which are
instead handled by print() in conjunc-
tion with the mysqgl_error() function in
the else clause.

If the database has already been created
for you, skip this step.

Script 12.3 Creating a new database consists of three
steps: connecting to the database, running a CREATE
DATABASE query using the mysql_query() function,
and then closing the connection.

eo0e = Script
|1 <!IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"

content="text/html; charset=utf-8" />
6 <title>Create the Database</title>
7 </head>
8 <body>
9 <?php // Script 12.3 - create_db.php
|10 /* This script connects to the MySQL
| server. It also creates and selects the
| database. */

12 // Attempt to connect to MySQL and print
out messages:

13 if ($dbc = @mysql_connect('localhost’,
'username', 'password')) {

14
15 print '<p>Successfully connected to
MySQL!</p>";

16

17 // Try to create the database:

18 if (@mysql_query('CREATE DATABASE

myblog')) {

19

20 print '<p>The database has been
created!</p>";

21

22 } else { // Could not create it.

23 print '<p style="color: red;">Could
not create the database because:

" . mysql_error() . '.</p>";

24 }

25

26 // Try to select the database:

27 if (@mysql_select_db('myblog')) {

28 print '<p>The database has been
selected.</p>';

29 } else {

30 print '<p style="color: red;">Could
not select the database because:
" . mysql_error() . '.</p>';

31 }

32

(script continues on next page)

356

Intro to Databases

Script 12.3 continued

eceoe =] Seript |
33 mysql_close(); // Close the connection.
34
35 } else {
36
37 print '<p style="color: red;">Could
not connect to MySQL:
" . mysql_
error() . '.</p>";
38
39 %
40
41 7>
42 </body>
43 </html>
™ O O Create the Database =
Successfully connected to MySQL!
The database has been created!
The database has been selected.
Figure 12.7 If the database could be created
and selected, you’ll see this result in the
Web browser.
® O O Create the Database (=]

Successfully connected to MySQL!

Could not create the database because:
Access denied for user 'user2'@'localhost’
to database 'myblog2'.

Could not select the database because:
Access denied for user 'user2'@'localhost’
to database 'myblog2'.

A

Figure 12.8 If the user doesn’t have the authority
to create a database, you’ll see a message

like this. A similar result will occur if the user
doesn’t have permission to select the database.

3.

Attempt to select the database:
if (@mysql_select_db('myblog')) {
print '<p>The database has been
selected.</p>";
} else {
print '<p style="color: red;">
Could not select the database
because:
' . mysql_error()
L u</p>ty
}
This conditional has the same structure
as that in Step 2. If PHP can select the
database, a message is printed. If it can’t
select the database, the specific MySQL
error will be displayed instead.
Every PHP script that runs queries on a
database must connect to MySQL and
select the database in order to work.

If you want, change the page title to
reflect this script’s new purpose:

<title>Create the Database</title>

Save your script as create_db. php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figures 12.7 and 12.8).

v Tips

You probably won't create databases with
any frequency and may not normally do
so using a PHP script. Still, this example
demonstrates both how you execute sim-
ple queries using PHP as well as the SQL
command needed to create a database.

You haven't done so in these examples,
but in general it’s a good idea to set your
database information—host name, user-
name, password, and database name—as
variables or constants. Then you can plug
them into the appropriate functions. By
doing so, you can separate the database
specifics from the functionality of the
script, allowing you to easily port that
code to other applications.

357

isvavivq v 9NI1D373G ANV SNILVIY)

CREATING A TABLE

Chapter 12

Creating a Table

Once the initial database has been created and
selected, you can begin to create individual
tables in it. A database can consist of multiple
tables, but in this simple example you'll create
one table in which data will be stored.

To create a table in the database, you'll use
SQL—the language that databases under-
stand. Because SQL is a lot like spoken
English, the proper query to create a new
table reads like so:

CREATE TABLE tablename (columnl
definition, column2 definition, etc.)

For each column, separated by commas,
you first indicate the column name and
then the column type. Common types are
TEXT, VARCHAR (a variable number of char-
acters), DATETIME, and INT (integer). Because
it's highly recommended that you create a
first column that acts as the primary key

(a column used to refer to each row), a
simple CREATE statement could be

CREATE TABLE my_table (id INT PRIMARY
KEY, information TEXT)

A table’s primary key is a special column

of unique values that is used to refer to the
table’s rows. The database makes an index of
this column in order to more quickly navigate
through the table. A table can have only

one primary key, which you normally set up
as an automatically incremented column

of integers. The first row has a key of 1, the
second has a key of 2, and so forth. Referring
back to the key always retrieves the values for
that row.

Table 12.2

entries Table

CoLumn NAmE

entry_id

title
entry
date_entered

CoLumn TypE

Positive, non-null, automatically
incrementing integer

Text up to 100 characters in length
Text of any length

Atimestamp including both the date
and the time the row was added

358

Intro to Databases

Script 12.4 To create a database table, define the
appropriate SQL statement and then invoke the
mysql_query() function.

8Qce =| Seript

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
| 1.0 Transitional//EN"

|2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

|3 <html xmlns="http://www.w3.0rg/1999/

| xhtml" xml:lang="en" lang="en">

:4 <head>

|5 <meta http-equiv="content-type"

: content="text/html; charset=utf-8" />
|6 <title>Create a Table</title>

7 </head>

|8 <body>

|19 <?php // Script 12.4 - create_table.php
|10 /* This script connects to the MySQL
| server, selects the database, and creates

a table. */

11

12 // Connect and select:

13 if ($dbc = @mysql_connect('localhost’,

'username', 'password')) {

14

15 // Handle the error if the database
couldn't be selected:

16 if (!@mysql_select_db('myblog')) {

17 print '<p style="color: red;">Could

not select the database because:
' . mysql_error() . '.</p>";

18 mysql_close();

19 $dbc = FALSE;

20 }

21

22 } else { // Connection failure.

23 print '<p style="color: red;">Could
not connect to MySQL:
" . mysql_
error() . ".</p>";

24 %

25

26 if ($dbc) {

27

28 // Define the query:

29 $query = "CREATE TABLE entries (

30 entry_id INT UNSIGNED NOT NULL AUTO_

INCREMENT PRIMARY KEY,

31 title VARCHAR(100) NOT NULL,

32 entry TEXT NOT NULL,

33 date_entered DATETIME NOT NULL

34 DY

35

(script continues on next page)

You can visit the MySQL Web site for more
information on SQL. By following the direc-
tions in this section, though, you should be
able to accomplish some basic database
tasks. The table that you'll create in this
example is described in Table 12.2.

In this example, you'll create a table that
stores information submitted via an HTML
form. In the next section of the chapter, you'll
write the script that inserts the submitted
data into the table created here.

To create a new table:

1. Begin a new PHP document in your text
editor or IDE (Script 12.4):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type'
content="text/html;
charset=utf-8" />

<title>Create a Table</title>
</head>
<body>

2. Begin a section of PHP code:
<?php // Script 12.4 - create_table.
php

continues on next page

359

3719V] V ONILVIY)

CREATING A TABLE

Chapter 12

3. Connect to the MySQL server, and select
the database:
if ($dbc = @mysql_connect
('localhost', 'username',
"password')) {
if (!@mysql_select_db('myblog')) {
print '<p style="color:
red;">Could not select the
database because:
'
. mysql_error() . '.</p>";
mysql_close();

$dbc = FALSE;
}
} else {
print '<p style="color: red;">

Could not connect to MySQL:
" . mysql_error() . '.</p>";

}

This is a alternative version of the code
used in the preceding script. The main
difference is that no messages are printed
if each step was successful (we'll assume
everything’s working by this point).

If, for some reason, the database could
not be selected, then an error is printed
and the connection is closed. It makes
sense to do this because if the database
cannot be selected, there’s no point in
trying to create the table in it. The $dbc
variable, which had represented the con-
nection, is set to FALSE then, as an indi-
cation that its assigned CREATE query
shouldn’t be executed (see Step 4).

4. Create the query for making the table:
if ($dbc) {
$query = 'CREATE TABLE entries (

entry_id INT UNSIGNED NOT NULL
AUTO_INCREMENT PRIMARY KEY,

title VARCHAR(100) NOT NULL,
entry TEXT NOT NULL,
date_entered DATETIME NOT NULL

PR

Script 12.4 continued

8o0e =) Seript

36 // Execute the query:

37 if (@mysql_query($query)) {

38 print '<p>The table has been
created.</p>";

39 } else {

40 print '<p style="color: red;">
Could not create the table
because:
' . mysql_error() .
'.</p><p>The query being run was: '
. $query . '</p>';

41 }

42

43 mysql_close(); // Close the connection.

44

45

46 7>

47 </body>

48 </html>

360

Intro to Databases

First, if $dbc still has a value, the table
should be created. If not, meaning that
no connection could be made or the
database couldn’t be selected, then none
of the following code will be executed.

As for the query itself, let’s break that into
more recognizable parts. First, to cre-

ate a new table, you write CREATE TABLE
tablename (Where tablename is replaced
by the actual, desired table name). Then,
within parentheses, you list every column
you want with each column separated by
a comma. Your table and column names
should be alphanumeric, with no spaces.
The first column in the table is called
entry_id;it's an unsigned integer (INT
UNSIGNED—which means that it can only
be a positive whole number). By including
the words NOT NULL, you indicate that this
column must have a value for each row.
The values automatically increase by one
for each row added (AUTO INCREMENT) and
stand as the primary key.

The next two columns consist of text. One,
called title, is limited to 100 characters.
The second, entry, can be nearly limitless
in size. Each of these fields is also marked
as NOT NULL, making them required fields.
Finally, the date_entered column is a
timestamp that marks when each record
was added to the table.

. Execute the query:
if (@mysql_query($query)) {
print '<p>The table has been
created.</p>";
1 else {
print '<p style="color: red;">
Could not create the table
because:
' . mysql_error()
. '.</p><p>The query being run

was: ' . $query . '</p>';

continues on next page

361

3719V] V ONILVIY)

CREATING A TABLE

Chapter 12

To create the table, you call the mysql_
query() function using the $query variable
as the argument. If a problem occurred,
the MySQL error is printed, along with the
value of the $query variable. This last step is
a particularly useful debugging technique.

6. Close the database connection and com-
plete the $dbc conditional:

mysql_close();
}

7. Complete the PHP code and the HTML
page:
7>
</body>
</html>

8. Save the script as create_table.php,
place it in the proper directory for your
PHP-enabled server, and test it in your
Web browser (Figures 12.9 and 12.10).

v Tips

W It's not necessary to write your SQL que-
ries partially in all capital letters as you
have here, but doing so helps to distin-
guish your SQL keywords from the table
and column names.

B On larger Web applications, it's highly rec-
ommended that you place the database
connection and selection code (lines 13
through 24 here) in a separate file, located
outside of the Web directory. Then, each
page that requires the database can
include this external file.

B Themysql_query() function returns
TRUE if a query was successfully run on a
database. That result doesn't necessarily
mean the desired result occurred.

B This chapter presents the basics of
MySQL and SQL-related knowledge
(including column types). You'll want
to check out other resources—Ilisted in
Appendix B—once youre comfortable
with the fundamentals.

® OO CreateaTable ™

The table has been created.

P
Figure 12.9 If all went well, all
you’ll see is this message.
00 Create a Table (=)

Could not create the table because:

You have an error in your SQL syntax; check the
manual that corresponds to your MySQL server
version for the right syntax to use near 'entry_id
INT UNSIGNED NOT NULL
AUTO_INCREMENT PRIMARY KEY, title
VARCHAR(100) ' at line 2.

The query being run was: CREATE TABLE entries
entry_id INT UNSIGNED NOT NULL
AUTO_INCREMENT PRIMARY KEY, title
VARCHAR(100) NOT NULL, entry TEXT NOT
NULL, date_entered DATETIME NOT NULL)

Figure 12.10 Between the MySQL error message and
printing out the query being executed, you should
be able to figure out what the problem is if the script
does not work properly.

362

Intro to Databases

Inserting Data into
a Database

As mentioned, this database will be used
as a blog, an online journal. Blog entries—
consisting of a title and text—will be added
to the database using one page and then
displayed on another page. It's a simple but
relevant use of a database.

In the last section, you created the table,
which consists of four columns: entry_id,
title, entry, and date_entered. The process
of adding information to a table is similar

to creating the table itself in terms of which
functions you use, but the SQL query is
different. To insert records, you use the
INSERT SQL command using either of the
following models:

INSERT INTO tablename VALUES (valuel,
value2, value3, etc.)

INSERT INTO tablename (columnl_name,
column2_name) VALUES (valuel, value2)

The query begins with INSERT INTO table-
name. Then you can either specify which
columns you'e inserting values for or not.
The latter is more specific and is therefore
preferred, but it can be tedious if youre popu-
lating a slew of columns. In either case, you
must be certain to list the right number and
type of values for each column in the table.

The values are placed within parentheses,
with each value separated by a comma.
Non-numeric values—strings and dates—
need to be quoted, numbers do not:

INSERT INTO example (name, age) VALUES
("Jonah', 1)

You run this query on the database using the
mysql_query() function. Because these que-
ries are often complex, it often makes sense
to assign each query to a variable and send
that variable to the mysql_query() function
(as in the previous example).

363

jSvavivqg v OLNI VivV(Q 9NILY3ISN]

INSERTING DATA INTO A DATABASE

Chapter 12

To demonstrate, let’s create a page that adds
blog entries to the database. Like many of the
examples in the preceding chapter, this one
will both display and handle the HTML form.
Before getting into the example, though, I'll
say that this script knowingly has a security
hole in it; it'll be explained and fixed in the
next section of the chapter.

To enter data into a database from an
HTML form:

1. Begin anew PHP document in your text
editor or IDE (Script 12.5):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Add a Blog Entry</title>
</head>
<body>

2. Create the initial PHP section and check
for the form submission:
<?php // Script 12.5 - add_entry.php
if (isset($_POST['submitted'])) {

3. Connect to and select the database:

$dbc = mysql_connect('localhost’,
'username', 'password');
mysql_select_db('myblog');
At this point, if youe running these exam-
ples in order, I'll assume you have a working
connection and selection process down,
so I'll dispense with all the conditionals
and error reporting (mostly to shorten the
script). If you have problems connecting to
and selecting the database, apply the code
already outlined in the chapter.

Script 12.5 The query statement for adding information
to a database is straightforward enough, but be sure
to match the number of values in parentheses to the
number of columns in the database table.

ece =1 Seript
|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
<title>Add a Blog Entry</title>

</head>

<body>

<?php // Script 12.5 - add_entry.php

|10 /* This script adds a blog entry to

| the database. */

O 0 N O

11
12 if (isset($_POST['submitted'])) {
// Handle the form.

13

14 // Connect and select:

15 $dbc = mysql_connect('localhost',

'username', 'password');

16 mysql_select_db('myblog');

17

18 // Validate the form data:

19 $problem = FALSE;

20 if (lempty($_POST['title']) &&

lempty($_POST['entry'])) {

21 $title = trim($_POST['title']);

22 $entry = trim($_POST['entry']);

23 } else {

24 print "<p style="color:
red;">Please submit both a title
and an entry.</p>";

25 $problem = TRUE;

26 }

27

28 if (!$problem) {

29

30 // Define the query:

31 $query = "INSERT INTO entries
(entry_id, title, entry, date_
entered) VALUES (0, '$title’,
'$entry’, NOWCDD";

32

(script continues on next page)

364

Intro to Databases

Script 12.5 continued

8ee =] Seript

33 // Execute the query:

34 if (@mysql_query($query)) {

35 print '<p>The blog entry has
been added!</p>'";

36 } else {

37 print '<p style="color:

red;">Could not add the entry

because:
' . mysql_error()

. '.</p><p>The query being run

was: ' . $query . '</p>';
38 }
39
40 } // No problem!
41
42 mysql_close();
43

44 } // End of form submission IF.

45

46 // Display the form:

47 7>

48 <form action="add_entry.php"
method="post">

Figure 12.11 PHP still performs some
basic form validation so that empty records
are not inserted into the database.

49 <p>Entry Title: <input type="text"
name="title" size="40" maxsize="100"
/></p>

50 <p>Entry Text: <textarea name="entry"
cols="40" rows="5"></textarea></p>

51 <input type="submit" name="submit"
value="Post This Entry!" />

52 <input type="hidden" name="submitted"
value="true" />

53 </form>

54 </body>

55 </html>

800 Add a Blog Entry =

Please submit both a title and an entry.

Entry Title:

Entry Text:

4, Validate the form data:

$problem = FALSE;

if (lempty($_POST['title']) &&
lempty($_POST['entry'])) {
$title = trim($_POST['title']);

trim($_POST['entry']);

$entry
} else {
print '<p style="color: red;">
Please submit both a title and
an entry.</p>";

$problem = TRUE;

}

Before using the form data in an INSERT
query, it ought to be validated. Here just
a minimum of validation is used, guar-
anteeing that some values are provided.
If so, new variables are assigned those
values, after trimming away extraneous
spaces. If not, an error message is printed
(Figure 12.11) and the $problemflag
variable is set to TRUE (because there

is a problem).

. Define the INSERT query:

if (1$problem) {
$query = "INSERT INTO entries

(entry_id, title, entry,

date_entered) VALUES (0,

"$title', '$entry', NOW(D)";
The query begins with the necessary
INSERT INTO tablename code. Then it lists
the columns for which values will be
submitted. After that is the word VALUES,
followed by four values (one for each
column, in order) within single quota-
tion marks and separated by commas.
When you assign this query to the $query
variable, you use double quotation marks
both to access the $title and $entry
variable values and to avoid conflicts
with the single quotation marks used to
demarcate the values.

continues on next page

365

jSvavivqg v OLNI VivV(Q 9NILY3ISN]

INSERTING DATA INTO A DATABASE

Chapter 12

Because the entry_id column has been
set to AUTO_INCREMENT, you can use @ as
the value and MySQL will automatically
use the next logical value for that column.
To set the value of the date_entered col-
umn, you use the MySQL NOW() function.
It inserts the current time as that value.

Run the query on the database:
if (@mysql_query($query)) {
print '<p>The blog entry has been
added!</p>";
} else {
print '<p style="color: red;">
Could not add the entry
because:
' . mysql_error()
'.</p><p>The query being run
was: ' . $query . '</p>';

}

The query, once defined, is run using the
mysql_query() function. By calling this
function as the condition of an if-else
statement, you can print simple messages
indicating the result of the query execution.
As an essential debugging tool, if the
query didn't run properly, the MySQL
error and the query being run are both

printed to the Web browser (Figure 12.12).

Close the $problem conditional, the data-
base connection, and complete the main
conditional and the PHP section:

} // No problem!

mysql_close();
} // End of form submission IF.
7>
From here on out, the form will be
displayed.

800 Add a Blog Entry

Could not add the entry because:
Column count doesn't match value count at row 1.

The query being run was: INSERT INTO entries (entry_id, title, entry,

date_entered) VALUES (0, 'This is the title.", "This is the title., "This is the

entry. This is the entry.", NOW())

Entry Title: |

Entry Text:
Post This Entry!

Figure 12.12 If the INSERT query didn’t work, the
MySQL error is printed along with the query that
was run.

366

Intro to Databases

eano Add a Blog Entry =]

Entry Title: Fallis Upon Us

It is getting colder outside, the leaves
are turning colors and falling, but I
still need to seal my driveway!

Entry Text:

Post This Entry!

Figure 12.13 This is the form for adding an entry to
the database.

e00o Add a Blog Entry =

The blog entry has been added!

Entry Title: |

Entry Text:
Post This Entry!

Figure 12.14 If the INSERT query ran properly, a
message is printed and the form is displayed again.

8. Create the form:

<form action="add_entry.php"
method="post">
<p>Entry Title: <input type="text"
name="title" size="40"
maxsize="100" /></p>
<p>Entry Text: <textarea
name="entry" cols="40"
rows="5"></textarea></p>
<input type="submit" name="submit"
value="Post This Entry!" />
<input type="hidden" name=
"submitted" value="true" />
</form>

The HTML form is very simple, requir-
ing only a title for the blog entry and the
entry itself. As a good rule of thumb, use
the same name for your form inputs

as the corresponding column names

in the database. Doing so makes errors
less likely.

9. Finish the HTML page:
</body>
</html>

10. Save the script as add_entry.php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web

browser (Figures 12.13 and 12.14).
v Tips

B MySQL allows you to insert several
records at once, using this format:
INSERT INTO tablename VALUES
(valuel, value2), (value3, value4);

Most other database applications don’t
support this construct, though.

B To retrieve the automatically incremented
number created for an AUTO_INCREMENT
column, use the mysql_insert_id()
function.

367

jSvavivqg v OLNI VivV(Q 9NILY3ISN]

SECURING QUERY DATA

Chapter 12

Securing Query Data

AsImentioned in the introduction to the
preceding sequence of steps, the code as writ-
ten has a pretty bad security hole in it. As it
stands, if someone submits text that contains
an apostrophe, that data will break the SQL
query (Figure 12.15). The result is obviously
undesirable, but why is it insecure?

If a malicious user knows they can break a
query by typing an apostrophe, they may try
to run their own queries using this hole. If
someone submitted DROP TABLE entries;
as the blog post title, the resulting query
would be:

INSERT INTO entries (entry_id, title,
entry, date_entered) VALUES (0,
"'DROP TABLE entries;', '<entry
text>"', NOW())

'The initial provided apostrophe completes
that part of the query, making the whole
query syntactically incorrect. The hope
there is that the newly provided query—
DROP TABLE entries—will be run when the
original INSERT query fails. This is called an
SQL injection attack, but fortunately it's easy
to prevent.

To do so, send potentially insecure data to
be used in a query through the mysql_real_
escape_string() function. This function
will escape—preface with a backslash—any
potentially harmful characters, making the
data safe to use in a query:

$var = mysql_real_escape_string($var);

Let’s apply this function to the preceding
script.

800 Add a Blog Entry (=]

Could not add the entry because:

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near 's getting colder
outside, the leaves are turning colors and falling, but I still' at line 1.

The query being run was: INSERT INTO entries (entry_id, title, entry,
date_entered) VALUES (0, 'Fall is Upon Us', 'It's getting colder outside, the
leaves are turning colors and falling, but I still need to seal my driveway!’,
NOW())

Eniry Title: |

Entry Text:

Figure 12.15 The apostrophe in the conjunction /t’s
breaks the query because apostrophes (or single
quotation marks) are used to delimit strings used
in queries.

800 Add a Blog Entry (=]

Entry Title: |ir's Another Test!

"Will these quotes and apostrophes cause
problems?", you ask? I don't think so!

Entry Text:

Post This Entry!

Figure 12.16 Now apostrophes in form data...

800 Add a Blog Entry (=)

The blog entry has been added!

Entry Title: |

Entry Text:

Post This Entry!

Figure 12.17 ...will not cause problems.

368

Intro to Databases

Script 12.6 To better secure the Web application and To secure query data:

the database, the mysql_real_escape_string()

function is applied to the form data used in the query. 1. Open add_entry.php (Script 12.5) in your
eoce 2 Saript text editor or IDE, if it is not already.

|1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

| 1.8 Transitional//EN" 2. Update the assignment of the $title and

| . .

|2 "http://waw.w3.org/TR/xhtml1/DTD/ $entry variables to read (Script 12.6):

| xhtmll-transitional.dtd"> $title = mysql_r‘eal_escape_stping
:3 <html xmlns="http://www.w3.0rg/1999/ (trim($_POST['title'1]));

| xhtml" xml:lang="en" lang="en"> .

|4 <head> $entr?/ = mysql_real_escape_string
:5 <meta http-equiv="content-type" (trim($_POST['entry'1));

| content="text/html; charset=utf-8" /> These two lines will greatly improve the
|6 <title>Add a Blog Entry</title>

security and functionality of the script.

|7 </head> For both posted variables, their values are
| 8 <body> .
|9 <7php // Script 12.6 - add_entry.php #2 first trimmed, thep sent through mysgl_
|10 /* This script adds a blog entry to the real_escape_string(). The result will be
: database. It now does so securely! */ safe to use in the query.
11
12 if (isset($_POST['submitted'])) { // 3. Save the script, place it on your PHP-
Handle the form. enabled server, and test it in your Web
13 browser (Figures 12.16 and 12.17).
14 // Connect and select:
15 $dbc = mysql_connect('localhost’,
'username', 'password');
16 mysql_select_db('myblog');
17
18 // Validate and secure the form data:
19 $problem = FALSE;
20 if (lempty($_POST['title']) &&
Tempty($_POST['entry'])) {

21 $title = mysql_real_escape_

string(trim($_POST['title']));
22 $entry = mysql_real_escape_

string(trim($_POST['entry']));
23 } else {
24 print '<p style="color: red;">

Please submit both a title and an

entry.</p>";
25 $problem = TRUE;
26 }
27
28 if (!$problem) {
29
30 // Define the query:
31 $query = "INSERT INTO entries

(entry_id, title, entry, date_

entered) VALUES (0, '$title',

'$entry', NOWCDD";
32

(script continues on next page)

369

Viv@ A¥INYD ONINNI3S

SECURING QUERY DATA

Chapter 12

v Tips

B Themysql_real_escape_string() func-

tion requires the database connection, so
it can only be called if it has access to a
live connection.

If you see (later in the chapter) that the
displayed blog posts have extra back-
slashes before apostrophes, this is likely
because you'e using a version of PHP
prior to version 6 and Magic Quotes is
enabled. (Magic Quotes automatically
escapes problematic characters in form
data, although not as well asmysql_real_
escape_string().) If that’s the case, you'll
need to apply the stripslashes() func-
tion to remove the extraneous slashes
from the submitted values:
$title = mysql_real_escape_string
(stripslashes(trim($_POST
['title'1D));

Script 12.6 continued

eoe = Seript

33 // Execute the query:

34 if (@mysql_query($query)) {

35 print '<p>The blog entry has
been added!</p>";

36 } else {

37 print '<p style="color:

red;">Could not add the entry
because:
' . mysql_error()
. '.</p><p>The query being run

was: ' . $query . '</p>';
38 }
39
40 } // No problem!
41
42 mysql_close();
43

44 } // End of form submission IF.

45

46 // Display the form:

47 7>

48 <form action="add_entry.php"
method="post">

49 <p>Entry Title: <input type="text"
name="title" size="40" maxsize="100"
/></p>

50 <p>Entry Text: <textarea name="entry"
cols="40" rows="5"></textarea></p>

51 <input type="submit" name="submit"
value="Post This Entry!" />

52 <input type="hidden" name="submitted"
value="true" />

53 </form>

54 </body>

55 </html>

370

Intro to Databases

Retrieving Data from
a Database

The next process this chapter demonstrates
for working with databases is retrieving
data from a populated table. You still use the
mysql_query() function, but retrieving data
is slightly different than inserting data—you
have to assign the retrieved information to a
variable in order to use it. This section goes
through this process one step at a time.

The basic syntax for retrieving data is the
SELECT query:

SELECT what_columns FROM what_table

The easiest query for reading data from a
table is

SELECT * FROM tablename

The asterisk is the equivalent of saying every
column. If you only require certain columns to
be returned, you can limit your query, like so:

SELECT title, entry FROM entries

This query requests that only the information
from two columns (title and entry) be gath-
ered. Keep in mind that this structure doesn't
limit what rows (or records) are returned, just
what columns for those rows.

Another way to alter your queryis to add
a conditional restricting which rows are
returned, accomplished using a WHERE clause:

SELECT * FROM users WHERE (first_name=
"Larry")

Here you want the information from every
column in the table, but only from the rows
where the first_name column is equal to
Larry. This is a good example of how SQL
uses only a few terms effectively and flexibly.

continues on next page

371

isvavivqg v WOdd viv(g SNIATRILIY

RETRIEVING DATA FROM A DATABASE

Chapter 12

The main difference in retrieving data from a
database as opposed to inserting data into a
database is that you need to handle the query
differently. You may want to assign the results
of the query to a variable:

$result = mysql_query($query);

In layman’s terms, this variable now knows
what the result of the query is (technically,
it points to the returned rows in the MySQL
server). To access multiple rows of informa-
tion retrieved, you should run the $result
variable through aloop:

while ($row = mysql_fetch_array
($result)) {
// Do something with $row.
}

With each iteration of the loop, the next row
of information from the query (referenced by
$result)is turned into an array called $row.
This process continues until no more rows of
information are found.

As with any array, when you retrieve records
from the database, you must refer to the
columns exactly as theyre defined in the
database (the keys are case-sensitive). So, in
this example, you must use $row['entry']
instead of $row['Entry']. For this reason,

it's recommended that you use entirely lower-
case column names when you create a table.

The best way to comprehend this system is
to try it. You'll write a script that retrieves the
posts stored in the entries table and displays
them (Figure 12.18). You may want to run
through add_entry.php a couple more times
to build up the table, first.

800 View My Blog =

It's Another Test!

"Will these quotes and apostrophes cause problems?", you
ask? I don't think so!
Edit Delete

Fall is Upon Us

It is getting colder outside, the leaves are turning colors and
falling, but I still need to seal my driveway!
Edit Delete

Figure 12.18 This dynamic Web page uses PHP to pull
out data from a database.

372

Intro to Databases

To retrieve data from a table:

1. Begin a new PHP document in your text
editor or IDE (Script 12.7):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>View My Blog</title>
</head>
<body>

continues on next page

Script 12.7 The SQL query for retrieving all data from a table is quite simple; but in order for PHP to access every
returned record, you must loop through the results one row at a time.

ece =] Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>View My Blog</title>

7 </head>

8 <body>

9 <?php // Script 12.7 - view_blog.php

10 /* This script retrieves blog entries from the database. */

11

12 // Connect and select:

13 $dbc = mysql_connect('localhost', 'username', 'password');

14 mysql_select_db('myblog');

15

16 // Define the query:

17 $query = 'SELECT * FROM entries ORDER BY date_entered DESC';
18

19 if ($r = mysql_query($query)) { // Run the query.

20

(script continues on next page)

373

isvavivqg v WOdd viv(g SNIATRILIY

RETRIEVING DATA FROM A DATABASE

Chapter 12

2. Define your PHP section and connect to
the database:

<?php // Script 12.7 - view_blog.php

$dbc = mysql_connect('localhost’,

'username', 'password');

mysql_select_db('myblog');

3. Define the SELECT query:
$query = "SELECT * FROM entries ORDER

BY date_entered DESC';

This basic query tells the database that
youd like to see every column of every
row in the entries table. The returned
records should be sorted, as indicated by
the ORDER BY clause, by the order in which
they were entered (recorded in the date_
entered column), starting with the most
recent first. This last option is indicated
by DESC, which is short for descending.

If the query was ORDER BY date_entered
ASC, the most recent addition would be
retrieved last.

Script 12.7 continued

eceoe =] Seript

21 // Retrieve and print every record:

22 while ($row = mysql_fetch_array($r)) {

23 print "<p><h3>{$row['title']}</h3>

24 {$row['entry']}

25 Edit

26 Delete

27 </p><hr />\n";

28 }

29

30 } else { // Query didn't run.

31 print '<p style="color: red;">Could not retrieve the data because:
' . mysql_error() .
'.</p><p>The query being run was: ' . $query . '</p>';

32 '} // End of query IF.

33

34 mysql_close(); // Close the database connection.

35

36 7>

37 </body>

38 </html>

374

Intro to Databases

4,

Run the query:

if ($r = mysql_query($query)) {

The SELECT query is run like any other.
However, the result of the query is
assigned to a $result (or, more tersely, $r)
variable, which will be referenced later.

Print out the returned results:
while ($row = mysql_fetch_array($r)) {
print "<p><h3>{$row['title']}</h3>
{$row['entry']}

<a href=\"edit_entry.php?id=
{$row['entry_id']}\">Edit
<a href=\"delete_entry.php?id=
{$row[entry_id'J}\">Delete
</p><hr />\n";

}

This loop sets the variable $row to an
array containing the first record returned
in $r. The loop then executes the follow-
ing commands (the print() statement).
Once the loop gets back to the beginning,
it assigns the next row, if it exists. It con-
tinues to do this until there are no more
rows of information to be obtained.

Because the mysql_fetch_array() func-
tion was used, you can refer to each indi-
vidual column in the row as you would
any other array. The array’s keys are the
names of the columns from the table—
hence, entry_id, title, and entry (theres
no need to print out the date_entered).
At the bottom of each post, two links are
created: to edit_entry.php and delete_
entry.php. These will be written in the
rest of the chapter. Each link passes the
posting’s database ID value along in the
URL. That information will be necessary
for those other two pages to edit and
delete the blog posting,.

continues on next page

375

isvavivqg v WOdd viv(g SNIATRILIY

RETRIEVING DATA FROM A DATABASE

Chapter 12

6. Handle the errors if the query didn’t run:
} else {
print '<p style="color: red;">
Could not retrieve the data
because:
' . mysql_error()
'.</p><p>The query being run

was: ' . $query . '</p>';
}

If the query couldn't run on the database,
it should be printed out, along with the
MySQL error (for debugging purposes).

7. Close the database connection:

mysql_close();

8. Complete the PHP section and the
HTML page:
7>
</body>
</html>

9. Save the script as view_blog.php, place
it in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figure 12.18).

10. Ifyou want, add another record to the
blog using the add_entry.php page
(Script 12.6), and run this page again
(Figure 12.19).

11. Ifyou want, check the source code of the
page to see the dynamically generated
links (Figure 12.20).

v Tips

B Themysql_fetch_array() function takes
another argument, which is a constant
indicating what kind of array should be
returned. MYSQL_ASSOC returns an associa-
tive array, whereas MYSQL_NUM returns a
numerically indexed array.

B Themysql_num_rows() function returns
the number of records returned by a
SELECT query.

00 View My Blog =
This is the newest post!
This is so absolutely amazing that I'm downright

speechless!
Edit Delete

It's Another Test!

"Will these quotes and apostrophes cause problems?", you
ask? I don't think so!
Edit Delete

Fall is Upon Us

T

Figure 12.19 Thanks to the SELECT query, which
orders the returned records by the date they were
entered, the most recently added entry is always
listed first.

tef
<html xmlng=“http://wwW.wi.org/1989/xhtnl” xml:lang="en® langs=“en">
<head>

<mets http-sguive"conrtant-typs® contents"toxe/henl; charastsuef-
<title>View My Blog</titlex

<ps<h}>This i3 the newest posti</hl>
This is ao absolutely amazing that I'm dewnright speschl
Edit</ax
<a href-"delete_sntiy.php?id=1">Delete
2iprehr />

<ps<hi>It's Another Test!</h3s
“Will theas guotes and apoatrophes cause proklema?”, you
Edits/n>
<a href-"delete_entry.php?id=2">Delete</ax
e/psehr />

<ps<hi>Fall is Upon Us</his
Tt ia gotting colder outaide, the leaves are turning eal
<a hraf="sdit entry.phpiidel sEdit
Deletes/a>
<{pechr =

£/ body>

</html>

€ = LID
e d]

Figure 12.20 Part of the HTML source of the page. Note
that the two links have ?id=X appended to each URL.

B Its possible to paginate returned records so
that 10 or 20 appear on each page (like the
way Google works). Doing so requires more
advanced coding than can be taught in this
book, though. See one of the author’s other,
more advanced books, or look online for
code examples and tutorials.

B You might want to apply the n12br()
function to the blog entry ($row['entry'])
to turn new lines in the entry into HTML

 tags. You can do so either prior to
storing the data or when displaying it.

376

Intro to Databases

® OO Delete a Blog Entry =)

Are you sure you want to delete this entry?
It's Another Test!

"Will these quotes and apostrophes cause
problems?", you ask? I don't think so!

Delete this Entry!

A

Figure 12.21 When the user arrives at this page, the
blog entry is revealed and the user must confirm that
they want to delete it.

® O O Delete a Blog Entry ™

The blog entry has been deleted.
2

Figure 12.22 If the delete query worked
properly, the user sees this result.

Deleting Data in
a Database

Sometimes you might also want to run a
DELETE query on a database. Such a query
removes records from the database. The
syntax for a delete query is

DELETE FROM tablename WHERE column=value

The WHERE clause isn't required, but if it’s
omitted, you'll remove every record from the
table. You should also understand that once
you delete a record, there’s no way to recover
it (unless you have a backup of the database).

As a safeguard, if you want to delete only
a single record from a table, add the LIMIT
clause to the query:

DELETE FROM tablename WHERE column=value
LIMIT 1

This clause ensures that only one record is
deleted at most. Once you've defined your
query, it's again executed using the mysql_
query() function, like any other query.

To see if a DELETE query worked, you can use
themysql_affected_rows() function. This
function returns the number of rows affected
by an INSERT, DELETE, or UPDATE query.

As an example, let’s write the delete_entry.
php script, which is linked from the view_
blog.php page. This page receives the data-
base record ID in the URL. It then displays the
entry to confirm that the user wants to delete
it (Figure 12.21). If the user clicks the button,
the record will be deleted (Figure 12.22).

377

jsvavivq v NI viv@g 9NI1373qg

DELETING DATA IN A DATABASE

Chapter 12

To delete data from a database:

1. Begin anew PHP document in your text
editor or IDE (Script 12.8):

<!DOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Delete a Blog Entry</title>

</head>
<body>

Script 12.8 The DELETE SQL command permanently removes a record (or records) from a table.

ece =] Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Delete a Blog Entry</title>

7 </head>

8 <body>

9 <?php // Script 12.8 - delete_entry.php

10 /* This script deletes a blog entry. */

11

12 // Connect and select:

13 $dbc = mysql_connect('localhost', 'username', 'password');

14 mysql_select_db('myblog');

15

16 if (isset($_GET['id']) && is_numeric($_GET['id'])) { // Display the entry in a form:
17

18 // Define the query:

19 $query = "SELECT title, entry FROM entries WHERE entry_id={$_GET['id']}";
20 if ($r = mysql_query($query)) { // Run the query.

21

22 $row = mysql_fetch_array($r); // Retrieve the information.

23

(script continues on next page)

378

Intro to Databases

2. Start the PHP code and connect to the
database
<?php // Script 12.8 -
delete_entry.php

$dbc = mysql_connect('localhost',
'username', 'password');

mysql_select_db('myblog');

continues on next page

Script 12.8 continued

ece =] Seript

24 // Make the form:

25 print '<form action="delete_entry.php" method="post">

26 <p>Are you sure you want to delete this entry?</p>

27 <p><h3>" . $row['title'] . '</h3>' .

28 $row['entry'] . '

29 <input type="hidden" name="id" value="' . $_GET['id'] . '" />

30 <input type="submit" name="submit" value="Delete this Entry!" /></p>

31 </form>";

32

33 } else { // Couldn't get the information.

34 print '<p style="color: red;">Could not retrieve the blog entry because:
' . mysql_
error() . '.</p><p>The query being run was: ' . $query . '</p>';

35 }

36

37 } elseif (isset($_POST['id']) && is_numeric($_POST['id'])) { // Handle the form.

38

39 // Define the query:

40 $query = "DELETE FROM entries WHERE entry_id={$_POST['id']} LIMIT 1";

41 $r = mysql_query($query); // Execute the query.

42

43 // Report on the result:

44 if (mysql_affected_rows() == 1) {

45 print '<p>The blog entry has been deleted.</p>';

46 } else {

47 print '<p style="color: red;">Could not delete the blog entry because:
' . mysql_
error() . '.</p><p>The query being run was: ' . $query . '</p>';

48 }

49

50 } else { // No ID set.

51 print '<p style="color: red;">This page has been accessed in error.</p>";

52 '} // End of main IF.

53

54 mysql_close(); // Close the database connection.

55

56 7>

57 </body>

58 </html>

379

jsvavivq v NI viv@g 9NI1373qg

DELETING DATA IN A DATABASE

Chapter 12

3.

If the page received a valid entry ID in the
URL, define and execute a SELECT query:
if (isset($_GET['id']) &&
is_numeric($_GET['id'])) {
$query = "SELECT title, entry
FROM entries WHERE entry_id=
{$_GET['id"']}";
if ($r = mysql_query($query)) {
To display the blog entry, the page must
confirm that a numeric ID is received
by the page. Because it should come in
the URL (when the user clicks the link
inview_blog.php, see Figure 12.20), you
reference $_GET['id"'].
The query is like the SELECT query used in
the preceding example, except that the
WHERE clause has been added to retrieve
a specific record. Also, because only the
two stored values are necessary—the title
and the entry itself—only those are being
selected.

This query is then run on the database
using the mysql_query() function.

Retrieve the record, and display the entry

in a form:

$row = mysql_fetch_array($r);

print '<form action="delete_entry.
php" method="post">

<p>Are you sure you want to delete
this entry?</p>

<p><h3>" . $row['title'] . '</h3>' .

$row['entry'] . '

<input type="hidden" name="1id"
value=""' . $_GET['id'] . '" />

<input type="submit" name="submit"
value="Delete this Entry!" /></p>

</form>";

Instead of retrieving all the records using

awhileloop, as you did in the preced-

ing example, you use one call to the

mysql_fetch_array() function to assign

the returned record to the $row variable.

Using this array, the record to be deleted

can be displayed.

380

Intro to Databases

The form first shows the blog entry

(see Figure 12.21), much as it did in the
view_blog.php script. When the user
clicks the button, the form will be submit-
ted back to this page, at which point the
record should be deleted. In order to do
so, the blog identification number, which
is passed to the script as $_GET['id'],
must be stored in a hidden input so that
it exists in the $_POST array upon submis-
sion (because $_GET['id'] won't have a
value at that point).

Report an error if the query failed:
} else {
print '<p style="color: red;">
Could not retrieve the blog
entry because:
' .
mysql_error() . '.</p><p>The
query being run was: ' . $query
. '</p>ty
}
If the SELECT query failed to run, the MySQL
error and the query itselfis printed out.

. Check for the submission of the form:

} elseif (isset($_POST['id']) &&
is_numeric($_POST['id'])) {

This elseif clause is part of the condi-

tional begun in Step 3. It corresponds to

the second usage of this same script (the

form being submitted). If this conditional
is TRUE, the record should be deleted.

. Define and execute the query:

$query = "DELETE FROM entries WHERE
entry_id={$_POST['id']} LIMIT 1";
$r = mysql_query($query);
This query deletes the record whose
entry_idhas avalue of $_POST['id'].
The ID value comes from the form, where
it’s stored as a hidden input. By adding
the LIMIT 1 clause to the query, you can
guarantee that only one record, at most,
is removed.

continues on next page

381

jsvavivq v NI viv@g 9NI1373qg

DELETING DATA IN A DATABASE

Chapter 12

8.

10.

11.

Check the result of the query:
if (mysql_affected_rows() == 1) {
print '<p>The blog entry has been
deleted.</p>";
} else {
print '<p style="color: red;">
Could not delete the blog entry
because:
' . mysql_error()
'.</p><p>The query being run
was: ' . Squery . '</p>';

}

The mysql_affected_rows() function
returns the number of rows altered by the
most recent query. If the query ran prop-
erly, one row was deleted, so this function
should return 1. If so, a message is printed.
Otherwise, the MySQL error and query
are printed for debugging purposes.

Complete the main conditional:
} else { // No ID set.
print '<p style="color: red;">This
page has been accessed in
error.</p>";
} // End of main IF.
If no numeric ID value was passed to
this page using either the GET method
or the POST method, then this else
clause takes effect.

Close the database connection, and
complete the page:

mysql_close();

7>

</body>

</html>

Save the script as delete_entry.php,
place it in the proper directory for your
PHP-enabled server, and test it in your
Web browser (Figures 12.21 and 12.22).
To test this script, you must first run
view_blog.php. Then, click one of the
Delete links to access delete_entry.php.

v Tips

You can empty a table completely by
running the query TRUNCATE TABLE
tablename. This approach is preferred
over using DELETE FROM tablename.
TRUNCATE will completely drop and
rebuild the table, which is better for
the database.

It’s a fairly common error to try to run
the query DELETE * FROM tablename,
like a SELECT query. Remember that
DELETE doesn't use the same syntax as
SELECT, because you aren't deleting
specific columns.

Admittedly, you probably don't want

to create an application that displays
records and lets any user delete them at
will. Instead, youd probably have one ver-
sion of the view_blog.php script without
the Edit and Delete links (for the public)
and this version for your administration
of the blog.

382

Intro to Databases

Entry Title: Fall is Upon Us (Edit)

It is getting colder outside, the leaves
are turning colors and falling, but I
still need to seal my driveway! Well, I
got one coat done!

Entry Text:

Update this Entry!

800 Edit a Blog Entry (=)

Figure 12.23 When the user arrives at the edit page,
the form is shown with the existing values.

® O O Edit a Blog Entry =

The blog entry has been updated.

A

Figure 12.24 Upon submitting the form,
the user sees a message like this.

Updating Data in
a Database

The final type of query this chapter will cover
is UPDATE. It's used to alter the values of a
record’s columns. The syntax is as follows:

UPDATE tablename SET columnl_name=value,
columnZ_name=valueZ WHERE some_column=
value

As with any other query, if the values are
strings, they should be placed within single
quotation marks:

UPDATE users SET first_name="Eleanor',
age=5 WHERE user_id=142

As with a DELETE query, you should use
aWHERE clause to limit the rows that are
affected. If you don't do this, every record in
the database will be updated.

To test that an update worked, you can again
use themysql_affected_rows() function to
return the number of records altered.

To demonstrate, let’s write a page for edit-
ing a blog entry. It will let the user alter an
entry’s title and text, but not the date entered
or the blog ID number (as a primary key,

the ID number should never be changed).
This script will use a structure like that in
delete_entry.php (Script 12.8), first showing
the entry (Figure 12.23), then handling the
submission of that form (Figure 12.24).

383

jsvavivq v NI viv(g 9NiLvad

UPDATING DATA IN A DATABASE

Chapter 12

To update data in a database:

1. Begin anew PHP document in your text
editor or IDE (Script 12.9).

<!DOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Edit a Blog Entry</title>

</head>
<body>

continues on page 386

Script 12.9 You can edit records in a database table by using an UPDATE SQL command.

eece =) Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Edit a Blog Entry</title>

7 </head>

8 <body>

9 <?php // Script 12.9 - edit_entry.php

10 /* This script edits a blog entry using an UPDATE query. */

11

12 // Connect and select:

13 $dbc = mysql_connect('localhost', 'username', 'password');

14 mysqgl_select_db('myblog');

15

16 if (isset($_GET['id']) && is_numeric($_GET['id'])) { // Display the entry in a form:
17

18 // Define the query.

19 $query = "SELECT title, entry FROM entries WHERE entry_id={$_GET['id']}";
20 if ($r = mysql_query($query)) { // Run the query.

21

22 $row = mysql_fetch_array($r); // Retrieve the information.

23

(script continues on next page)

384

Intro to Databases

Script 12.9 continued

ece =] Seript

24 // Make the form:

25 print '<form action="edit_entry.php" method="post">

26 <p>Entry Title: <input type="text" name="title" size="40" maxsize="100" value="" .
htmlentities($row['title']) . '" /></p>

27 <p>Entry Text: <textarea name="entry" cols="40" rows="5">' . htmlentities($row['entry']) .
'</textarea></p>

28 <input type="hidden" name="id" value="' . $_GET['id'] . '" />

29 <input type="submit" name="submit" value="Update this Entry!" />

30 </form>";

31

32 } else { // Couldn't get the information.

33 print '<p style="color: red;">Could not retrieve the blog entry because:
' . mysql_

error() . '.</p><p>The query being run was: ' . $query . '</p>';

34 }

35

36 3} elseif (isset($_POST['id']) && is_numeric($_POST['id'])) { // Handle the form.

37

38 // Validate and secure the form data:

39 $problem = FALSE;

40 if (lempty($_POST['title']) && !empty($_POST['entry'])) {

41 $title = mysql_real_escape_string(trim($_POST['title']));

42 $entry = mysql_real_escape_string(trim($_POST['entry']1));

43 } else {

44 print '<p style="color: red;">Please submit both a title and an entry.</p>';

45 $problem = TRUE;

46 }

47

48 if (!$problem) {

49

50 // Define the query.

51 $query = "UPDATE entries SET title='$title', entry='$entry' WHERE entry_id={$_

POST['id"]}";

52 $r = mysql_query($query); // Execute the query.

53

54 // Report on the result:

55 if (mysql_affected_rows() == 1) {

56 print '<p>The blog entry has been updated.</p>';

57 } else {

58 print '<p style="color: red;">Could not update the entry because:
' . mysql_

error() . '.</p><p>The query being run was: ' . $query . '</p>';

59 }

60

61 } /7 No problem!

62

63 } else { // No ID set.

64 print '<p style="color: red;">This page has been accessed in error.</p>";

65 } // End of main IF.

66

67 mysql_close(); // Close the database connection.

68

69 7>

70 </body>

71 </html>

385

jsvavivq v NI viv(g 9NiLvad

UPDATING DATA IN A DATABASE

Chapter 12

2.

Start your PHP code and connect to
the database:

<?php // Script 12.9 - edit_entry.php
$dbc = mysql_connect('localhost',
'username', 'password');

mysql_select_db('myblog');

If the page received a valid entry ID in the
URL, define and execute a SELECT query:
if (isset($_GET['id']) &&
is_numeric($_GET['id'])) {
$query = "SELECT title, entry
FROM entries WHERE entry_id=
{$_GET['id"']}";
if ($r = mysql_query($query)) {
This code is exactly the same as that in
the delete page, selecting the two column
values from the database for the provided
ID value.

Retrieve the record, and display the entry

in a form

$row = mysql_fetch_array($r);

print '<form action="edit_entry.php"
method="post">

<p>Entry Title: <input type="text"
name="title" size="40" maxsize=
"100" value="' . htmlentities($row
["title']) . "" /></p>

<p>Entry Text: <textarea name=
"entry" cols="40" rows="5">"
. htmlentities($row['entry'])
. "</textarea></p>

<input type="hidden" name="id"
value="" . $_GET['id'] . '"" />

<input type="submit" name="submit"
value="Update this Entry!" />

</form>";

386

Intro to Databases

Again, this is almost exactly the same

as in the preceding script, including

the most important step of storing the

ID value in a hidden form input. Here,
though, the stored data isn't just printed
but is actually used as the values for form
elements. For security and to avoid poten-
tial conflicts, each value is run through
htmlentities() first.

. Report an error if the query failed:
} else {
print '<p style="color: red;">

Could not retrieve the blog
entry because:
' .
mysql_error() . '.</p><p>The
query being run was: ' . $query
L '<p>ty

}

. Check for the submission of the form:

} elseif (isset($_POST['id']) &&
is_numeric($_POST['id'])) {

This conditional will be TRUE when the
form is submitted.

. Validate and secure the form data:

$problem = FALSE;
if (lempty($_POST['title']) &&
lempty($_POST['entry'])) {
$title = mysql_real_escape_
string(trim($_POST['title']));
$entry = mysql_real_escape_
string(trim($_POST['entry'1));
} else {
print '<p style="color: red;">
Please submit both a title and
an entry.</p>";

$problem = TRUE;

continues on next page

387

jsvavivq v NI viv(g 9NiLvad

UPDATING DATA IN A DATABASE

Chapter 12

This code comes from the page used to
add blog postings. It performs minimal
validation on the submitted data and then
runs it through the mysql_real_escape_
string() function to be safe. Because the
form data can be edited, the form should
be validated as if it were a new record
being created.

Define and execute the query:
if (!$problem) {
$query = "UPDATE entries SET
title="$title', entry='S$entry’
WHERE entry_id={$_POST['id']}";
$r = mysql_query($query);
The UPDATE query sets the title column
equal to the value entered in the form’s
title input and the entry column equal to
the value entered in the form’s entry tex-
tarea. Only the record whose entry_idis
equal to $_POST['id"], which comes from
a hidden form input, is updated.

Report on the success of the query:
if (mysql_affected_rows() == 1) {

print '<p>The blog entry has been
updated.</p>";
} else {
print '<p style="color: red;">
Could not update the entry
because:
' . mysqgl_error()
. '.</p><p>The query being run
was: ' . $query . '</p>';
3

If one row was affected, then a success
message is returned. Otherwise, the
MySQL error and the query are sent to the
Web browser.

388

Intro to Databases

800
Fall is Upon Us (Edit)

It is getting colder outside, the leaves are
turning colors and falling, but I still need to

seal my driveway! Well, I got one coat done!

Edit Delete

View My Blog =

Figure 12.25 Reloading the view_blog.php script
reflects the changes made to the entries.

10.

11

.

12

13.

Complete the conditionals:
} // No problem!
} else { // No ID set.
print '<p style="color: red;">
This page has been accessed in
error.</p>";
} // End of main IF.
If no numeric ID value was passed to this
page using either the GET method or

the POST method, then this else clause
takes effect.

Close the database connection, and
complete the page:

mysql_close();

7>

</body>

</html>

Save the file as edit_entry.php, place it
in the proper directory for your PHP-
enabled server, and test it in your Web
browser (Figures 12.23 and 12.24).

As in the preceding example, to edit an
entry, you must click its Edit link in the
view_blog.php page.

Revisit view_blog.php to confirm that
the changes were made (Figure 12.25).

389

jsvavivq v NI viv(g 9NiLvad

UPDATING DATA IN A DATABASE

Chapter 12

v Tips

The id is a primary key, meaning that its
value should never change. By using a
primary key in your table, you can change
every other value in the record but still
refer to the row using that column.

Themysql_real_escape_string()
function does not need to be applied to
the ID values used in the queries, as the
is_numeric() test confirms they don't
contain apostrophes or other problematic
characters.

More thorough edit and delete pages
would use the mysql_num_rows() in a
conditional to confirm that the SELECT
query returned a row prior to fetching it:

if (mysql_num_rows($r) == 1) {..

If you run an update on a table but
don't change a record’s values, mysql_
affected_rows() will return 0.

It can’'t hurt to add a LIMIT 1 clause to an
UPDATE query, to ensure that only one row,
at most, is affected.

390

REGULAR
EXPRESSIONS

If there were just two things you should
understand about regular expressions,

they would be that regular expressions are
supremely useful in advanced program-
ming and that they're easy to use but taxing
to write. However, once you understand
the rules for writing regular expressions,
that extra knowledge will pay off in spades
because regular expressions can vastly
improve the quality of your programming.

This chapter will identify what regular expres-
sions are, discuss the rules for constructing
them (in great detail), and provide some useful
examples demonstrating their capabilities.

Important Compatibility Note

Most of the book has been updated for PHP 6,
while still being backward compatible for
older versions. The type of regular expres-
sions covered in this chapter—called POSIX
Extended—may be disabled in the final
version of PHP 6. Because, at the time of this
writing, it is not known when PHP 6 will be
released or if POSIX Extended regular expres-
sions will be disabled, I've retained this chap-
ter in this edition. If you are running PHP

6 and you find that the functions and code
used herein don't work, turn to the book’s
corresponding Web site (www.DMCInsights.
com/phpvgs3/) and support forum (www.
DMCInsights.com/phorum/) for assistance.

391

SNOISS3IU4XT AVINOIY

www.DMCInsights.com/phpvqs3/
www.DMCInsights.com/phpvqs3/
www.DMCInsights.com/phorum/
www.DMCInsights.com/phorum/

WHAT ARE REGULAR EXPRESSIONS?

Chapter 13

What Are Regular
Expressions?

Think of regular expressions as an elaborate
system of matching patterns. For example,
a United State zip code is in the format
#H### - ###H, where # stands for an integer
between 0 and 9 and the last four digits
(plus the hyphen) are optional. Therefore,
any valid zip code can be identified if it
matches this pattern:

A([0-91{5})(-[0-91{43)7$

Writing the pattern is the hardest part of
using regular expressions, and over the
course of this chapter you'll learn what each
character means. After youve created a pat-
tern, you then use one of PHP’s built-in func-
tions to check a value against the pattern.

PHP supports two types of regular expres-
sions: POSIX Extended and PCRE (Perl
compatible). The latter are more powerful
and slightly faster, but this chapter covers
the former, which are easier to learn, which is
why I cover them in this book. Both versions
have been supported in PHP for some time
now, although POSIX Extended functions
may be disabled in PHP 6.

PHP has six POSIX functions for working
with regular expressions. These are listed in
Table 13.1 (it’s really just three functions plus
case-insensitive versions of those three).

In order to explain how patterns are created,
this chapter starts by introducing literals

and then discusses metacharacters (spe-

cial symbols) and how to group characters
together. Next you'll learn about quantifiers
and conclude with classes. The combination
of literals, metacharacters, groupings, quanti-
fiers, and classes defines your pattern.

As a formatting rule, this section defines
patterns in bold code font (pattern) and indi-
cates what the pattern matches in italics.

Table 13.1

POSIX Extended Functions

FuncTion

ereg()

eregi()
ereg_replace()
eregi_replace()

split()

spliti()

PURPOSE

Match a pattern
Match a pattern

Match and replace
a pattern

Match and replace
a pattern
Split a string using
a pattern
Split a string using
a pattern

CAsE
SENSITIVE?

No

Yes

No

392

Regular Expressions

v

Tips

Some text editors, such as BBEdit for
Macintosh, TextPad for Windows, and
emacs for Unix, among others, allow you
to use regular expressions to match and
replace patterns within and throughout
several documents (Figure 13.1). This
may be another good reason to learn
regular expressions and is something to
consider when choosing your text editor.

If you learned regular expressions in Unix,
Perl, or another technology, you might be
able to begin using PHP’s PCRE functions
with just a little explanation. See the PHP
manual for the proper functions to use
and their syntax.

Search For: | @, L5

E Use Grep

~([B-91{5})(4[8-91{41 17§

Patterns: E m

Find All

EStart at Top
["1Wrap Around
["1Search Backwards

E Case Sensitive
Replace With: 5, 5

["1 Search Selection Only

[Extend Selection

["1 Match Entire Words

Replace

Replace All

Cancel

[] Multi-File Search

Saved Search Sources: B

[Frort Document

Options...

Figure 13.1 Within BBEdit’s standard Find & Replace dialog box, you have the option of
using regular expressions (even across several files or folders) by checking the Use Grep
box. BBEdit can also store regular expression patterns for you and has some built in.

393

¢SNOISSIUdXT ¥VINOIY IY LYHM

MATCHING PATTERNS

Chapter 13

Matching Patterns

Two functions are built into PHP expressly
for the purpose of matching a pattern within
astring: ereg() and eregi(). The only differ-
ence between the two is that ereg() treats
patterns as case-sensitive, whereas eregi()
is case-insensitive, making it less particular.
The latter is generally recommended for com-
mon use, unless you need to be more explicit
(perhaps for security purposes, as with pass-
words). Both functions are evaluated to TRUE
if the pattern is matched or FALSE if it isn't.

Here are two different ways to use these
functions:

eregi('pattern’, 'string');
or

$pattern = 'pattern';
$string = 'string';
eregi($pattern, $string);

Throughout the rest of the chapter, you'll
assign the pattern to a variable, as in the
second example, to draw more attention to
the pattern itself—the heart of any regular
expression.

The best way to learn and master regular
expressions is by practicing. Over the course
of this chapter you'll learn how to define a
pattern by combining the various building
blocks: literals, metacharacters, groupings,
and classes. Rather than throw pages of
information at you and then apply all of that
at once, let’s create a simple script that tests
a string against a pattern.

This script will display a form that takes two
text inputs: the regular expression pattern
and the string (or, potentially, number) being
checked. The script will then submit these
values to itself and report on whether that
string matches that pattern. You'll use this
script to practice with patterns through most
of this chapter.

394

Regular Expressions

To match a pattern:

1. Begin a new PHP document in your text

editor or IDE (Script 13.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"

content="text/html;
charset=utf-8" />

<title>Testing Regular Expression

Patterns</title>
</head>
<body>

continues on next page

Script 13.1 This simple script lets you enter a pattern and a string or number to test regular expressions.

868 5] Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
6 <title>Testing Regular Expression Patterns</title>

7 </head>

8 <body>

9 <?php // Script 13.1 - test_pattern.php

10 /* This script takes a submitted string and checks it against a submitted pattern. */
11

12 // Set the variables to blank values:

13 $string = '";

14 S$pattern = '';

15

16 if (isset($_POST['submitted'])) { // Has the form been submitted?
17

18 // Assign values from the form:

19 $pattern = trim($_POST['pattern']);

20 $string = $_POST['string'];

21

(script continues on next page)

395

SNY31Llvd ONIHOLVIN

MATCHING PATTERNS

Chapter 13

2. Create a PHP section and initialize two ®e0o0 Testing Regular Expression Patterns =)
variables:

<?php // Script 13.1 - test_pattern.

php
$string = '";

Regular Expression Pattern: |A([0-5}53-[0-3}4}75

Test String: | 12345-1236 |

(]

$pattern = ; Figure 13.2 The form is sticky—it remembers the

The HTML form displays the submitted values that were entered in its previous use.
string and pattern as the default values for

those inputs (Figure 13.2). Because these

variables won't have a default value when

the page is first loaded (at which point

the form hasn't been submitted), theye

initially set to an empty value.

3. Check to see whether the form has been
submitted:

if (isset($_POST['submitted'])) {
Because this page both displays and handles

the HTML form, a conditional is used to
check for the value of a submit variable.

Script 13.1 continued
806 = Seript

22 // Print the results:

23 print "<p>The result of checking
$string
against
$pattern
is ";

24 if (eregi($pattern, $string)) {

25 print 'TRUE!</p>";

26 } else {

27 print 'FALSE!</p>';

28 }

29

30 %

31 // Display the HTML form:

32 7>

33 <form action="test_pattern.php" method="post">

34 <p>Regular Expression Pattern: <input type="text" name="pattern" value="<?php print
$pattern; ?>" size="30" /></p>

35 <p>Test String: <input type="text" name="string" value="<?php print $string; ?>" size="30"
/></p>

36 <input type="submit" name="submit" value="Test!" />

37 <input type="hidden" name="submitted" value="true" />

38 </form>

39 </body>

40 </html>

396

Regular Expressions

The result of checking
12345-1236

against
MI0-91{5))(-[0-91{4})?§
is TRUE!

Figure 13.3 The script
reprints the values that
were entered in the form.

Adjusting for Magic Quotes

If youe using an older version of PHP and
Magic Quotes is enabled, you'll need to
add some code to the first script in this
chapter. If you don't, the extra backslashes
that Magic Quotes adds to form data will
throw off the regular expression results.
To see if Magic Quotes is enabled, call

the get_magic_quotes_gpc() function.

If it returns TRUE, you would apply the
stripslashes() function to the form data:

if (get_magic_quotes_gpc()) {
$pattern = stripslashes(trim
($_POST['pattern']));
$string = stripslashes($_POST
['string']);
1 else {
$pattern = trim($_POST
['pattern']);
$string = $_POST['string'];
k;

You would use this code instead of that on
lines 19 and 20 of Script 13.1. This change
will not be required in the second script,
which deals specifically with URLs. If a
submitted URL contains quotation marks,
it won't be a valid URL anyway, so it would
fail the regular expression.

4, Get the submitted values:

$pattern = trim($_POST['pattern']);
$string = $_POST['string'];

In order to also improve the accuracy of
the regular expressions, any extra spaces
are removed from the beginning and end
of the pattern using trim(). This step

will be more important once your patterns
define the characters a string must begin
and end with (in which case a space could
make a valid string invalid). For that reason,
extraneous spaces are not automatically
removed from the string to be matched.

If youre using PHP 4 or 5, see the sidebar
for the Magic Quotes adjustment you may
need to make in this script.

. Begin printing out the results:

print "<p>The result of checking

<span style=\"font-style:
italic;\">$string

against
<span style=\"font-
weight: bold;\">$pattern

n

is ";
The main purpose of this script is to run a
regular expression using a submitted pat-
tern and a string. While you'e reporting
on the results, it will be beneficial to see
the submitted pattern and string again.
These values are printed out here, along
with some formatting (and many break
tags to make the result flow over several
lines; Figure 13.3).

. Check for a match, and report on

its success:

if (eregi($pattern, $string)) {
print 'TRUE!</p>";

} else {
print 'FALSE!</p>"';

continues on next page

397

SNY31Llvd ONIHOLVIN

MATCHING PATTERNS

Chapter 13

N

10.

The eregi() function—which is
case-insensitive—is the condition for
an if-else statement. If the string
matches the pattern, eregi() returns
TRUE and that result is printed.
Otherwise, the string didn't match the
pattern. (Each print() statement also
closes the paragraph begun in Step 5, in
case you were wondering what those
closing </p> tags were doing.)

Complete the form submission condi-
tional and close the PHP section:

}

7>

Create the HTML form:

<form action="test_pattern.php"
method="post">

<p>Regular Expression Pattern:
<input type="text" name=
"pattern" value="<?php print
$pattern; ?>" size="30" /></p>

<p>Test String: <input type="text"
name="string" value="<?php print
$string; 7>" size="30" /></p>

<input type="submit" name="submit"
value="Test!" />

<input type="hidden" name=
"submitted" value="true" />

</form>

This is a very simple HTML form contain-
ingjust two text inputs and a submit but-
ton. The text inputs have preset values;
they use print() statements to print the
values of $pattern and $string.

Complete the HTML page:
</body>
</html>

Save the script as test_pattern.php,
place it in the proper directory for your
PHP-enabled server, and load it in your
Web browser (Figure 13.4).

800

Testing Regular Expression Patterns

Regular Expression Pattern:

Test String:

Figure 13.4 This form takes the user input for a
regular expression pattern and a string.

v Tips

B When it comes time for you to create
a script that validates a certain string
format—like an email address, a name,
or a URL—use this script to test your
pattern.

B Remember that regular expressions in
PHP are case-sensitive by default. The
eregi() function used in this example
overrules this standard behavior.

398

Regular Expressions

Regular Expression Pattern: ann

Test String: |annette

800 Testing Regular Expression Patterns =

Figure 13.5 The first regular expression test checks a
literal (ann) against a string.

The result of checking
annette

against

ann

is TRUE!

Regular Expression Pattern: ann

Test String: | annette

8000 Testing Regular Expression Patterns =

Figure 13.6 A match is made.

800 Testing Regular Expression Patterns =

The result of checking
Hello, Ann!

against

ann

is TRUE!

Regular Expression Pattern: ann

Test String: |Hello, Ann!

Figure 13.7 Another match is made even though ann
is in the middle of the string and capitalized.

v Tip

B The examples in this section are purely
for demonstration purposes. You should
never use a pattern containing just liter-
als in a regular expression. If you need to
match specific text, the strstr() func-
tion is more efficient.

Using Literals

The first type of character you'll use for defin-
ing patterns is a literal. A literal is a value
that is written exactly as it is interpreted. For
example, the pattern a matches the letter a,
ab matches ab, and so forth.

One trick to understanding literals is that
they make a match assuming the literal is
found anywhere in a string. So, assuming
you'e using a case-insensitive regular expres-
sion function (like eregi()), the literal cat
will match any of the following strings:

& catalog
& Thatdarn cat
& My name is Catherine.

This flexibility with respect to where in a
string a pattern is matched applies for all
patterns—not just literals—unless you use
special characters, as you'll see next. But first,
let’s use the test script to see literals

and eregi() in action.

To use literals:

1. Load test_pattern.php in your Web
browser.

2. Enter ann as your pattern and annette as
your string (Figure 13.5).

3. Submit the form to see the results
(Figure 13.6).
As youd expect, a match is made because
the string annette begins with ann.

4. Retest using the same pattern but with
Hello, Ann! as your string (Figure 13.7).
Again, a match is made because the let-
ters ann are found within the string.

5. Continue testing until youre comfortable
with the concept of matching literals.
Any string you submit will make a match
as long as it includes ann somewhere,
regardless of case.

399

S1Vy3LI] ONIS

USING METACHARACTERS

Chapter 13

Using Metacharacters Table 13.2

Just one step beyond literals in terms of Metacharacters

complexity are metacharacters (Table 13.2). CHARACTER Name Meanine

These are special symbols that have a mean- . Period Any single character
ing beyond their literal value. Whereas a A Caret Beginning of a string
simply means a, the first metacharacter, the $ Dollar sign End of a string
period (.), matches any single character [Pipe Alternatives (or)

(. matches a, b, ¢, 1, &, and so on). This is O Parentheses Group

pretty straightforward, although you should
note that if you want to refer to a meta-
character literally, you must escape it, much
as you escape a quotation mark to print it.
Hence \. matches the period.

Two metacharacters specify where certain
characters must be found. The caret (A)—
pronounced like the vegetable and some-
times referred to as the ~at—marks the
beginning of a pattern. So, whereas abc
matches someabcstring, Aabe doesn't

(it matches abcsomestring).

There is also the dollar sign ($). It works like
the caret but marks the end of a pattern.
Therefore, a$ matches any string ending
with an a, like somestringa.

You can combine metacharacters and liter-
als to make more demanding patterns. For
example, Aa$ only matches a; Aa. $ matches
any two-character string beginning with a,
followed by whatever; and A.a$ corresponds
to any two-character string ending with a.

Regular expressions also use the pipe (1),
which is the equivalent of or. Therefore, Aalb$
matches any string that either begins with

a or ends with b. More practically, grelay
matches both potential spellings of the color.

Using the basic symbols established so far,
you can begin to incorporate parentheses to
group characters into more involved patterns.
Think of parentheses as being used to estab-
lish a new literal. Whereas yes Ino matches
many things, including yeso or yeno (ye plus
either s or 7 plus 0), Cyes) 1 (no), accepts
either of those two words in their entirety,
which is certainly what youd rather look for.

400

Regular Expressions

e00 Testing Regular Expression Patterns

The result of checking
http i iwww.example com
against

Ahttp://

is TRUE!

Regular Expression Pattern: |ahttp:/

Test String: | http:/ jwww.example.com

Figure 13.8 This is the beginning of a pattern for
matching valid URLs.

800 Testing Regular Expression Patterns

The result of checking
www.exampfe .com
against
Afhttp:/Hlwww.)

is TRUE!

Regular Expression Pattern: | sthttp:/)| (www.)

Test String: | www.example.com

Figure 13.9 A more flexible pattern uses grouping
and the pipe.

800 Testing Regular Expression Patterns

The result of checking
example

against
A(http://)l(www.)

is FALSE!

Regular Expression Pattern: Athttp:/ /)| www.)

Test String: example

Figure 13.10 Strings that don’t begin with either
http://or www. don’t pass the regular expression.

To use metacharacters:

1. Load test_pattern.php in your Web
browser, if it isn't loaded already.

2. Enter "http:// as your pattern and
http://www.example.comas your string.
One way to check for a valid URL is to
look for the Attp:// start. This pattern
insists that the submitted code begin
with those characters.

3. Submit the form to see the results
(Figure 13.8).
Aslong as the submitted string begins
with Attp://, it will pass the regular expres-
sion. This isn't an absolute way to check
for a valid URL, but it’s a start.

4. Retest using AChttp://) 1 (www.) as your
pattern and www.example.com as your
string (Figure 13.9).

If you want, you can broaden the pattern
so that the submitted URL begins with
either Attp:// or www.

5. Continue testing until youre comfortable
with the concepts of metacharacters and
groupings (Figure 13.10).

v Tips

B To include special characters
(A.LI$O1*7{}\) in a pattern, you need
to escape them (put a backslash before
them). This is true for the metacharacters
and the grouping symbols (parenthe-
ses and brackets). You can also use the
backslash to match new lines (\n) and
tabs (\t), as you would in a print()
statement.

B Another benefit of grouping is the ability
to use back referencing. This technique
is covered in the section “Matching and
Replacing Patterns” of this chapter.

B Using the pipe within patterns is referred
to as alternation.

401

SYILIVAVHIVLIN ONISN

USING QUANTIFIERS

Chapter 13

Using Quantifiers

Three special metacharacters called quan-
tifiers allow for multiple occurrences in a
pattern (Table 13.3). The question mark (?)
matches zero or one of a thing, the asterisk
(*) is used to match zero or more of a thing,
and the plus matches one or more of a thing.
(T use this imprecise thingin this explanation
because quantifiers can be applied to single
characters, groupings, or classes.)

So a? matches up to one a (a or no a’s match),
a* matches zero or more a’s (a, aa, aaa, and
so on), and a+ matches one or more a’s (a, aa,
aaa, and so on, but there must be at least one).

To match a certain quantity of a thing, put
the quantity between curly braces ({ }), stat-
ing either a specific number, a minimum,

or a minimum and a maximum. Thus, a{3}
matches aaa; a{3,} matches aaa, aaaa, and
so on (three or more a’s); and a{3,5} matches
just aaa, aaaa, and aaaaa (between three
and five).

Using parentheses, you can apply quantifiers
to groupings. Hence, a{3} matches aaa, but
(abc) {3} matches abcabcabce. As a better
example, bon* matches a string containing
bon followed by zero or more s (say, bone or
bonnet), but (bon)* matches a string con-
taining bon, followed by zero or more bon’s
(bonjour or bonbon).

Table 13.3

Quantifiers

CHARACTER
?

*

+

ix}

%, v}
x,}

MEANING

Zero or one occurrences

Zero or more occurrences

One or more occurrences

Exactly x occurrences

Between x and y occurrences (inclusive)
At least x occurrences

402

Regular Expressions

00 Testing Regular Expression Patterns =

The result of checking
90210

against
AOITI2I3141516171819){5)$
is TRUE!

Regular Expression Pattern: |~01112|3]4/5(6|7|8|9){5}%

Test String: [30210 |

Figure 13.11 This unseemly pattern checks for a valid
five-digit zip code.

800 Testing Regular Expression Patterns =]
The result of checking

94q17

against

A(DILI213141516171819){5}$

is FALSE!

Regular Expression Pattern: |A(0]112|3/4(5/6|7|8|9){5}$

Test String: [94q17 \

Figure 13.12 A single letter placed within the zip code
causes it to no longer match the pattern.

To use quantifiers:

1. Load test_pattern.php in your Web
browser, if it isn't loaded already.

2. EnterA(0111213141516171819){5}$ as
your pattern and a five-digit number as
your string, and submit the form to see
the results (Figure 13.11).

A valid United States zip code is a number
five digits long. To check for this, you use
the caret to indicate that the submitted
string must begin with what follows.

In parentheses, you list all the numer-
als, with the pipe in between them. This
grouping says that the characters can be
a zero or a one or a two or a three, and
so forth. Then the {5} quantifier speci-
fies exactly how many characters must
be used out of the grouping,. Finally, the
dollar sign indicates that this (the five
numbers) must be the end of the string.

3. Retest using the same pattern but using
avalid or invalid zip code as your string
(Figure 13.12).

4. Continue testing until youre comfortable
using quantifiers.

v Tips

B Theregular expression used in this
example is a complicated way to validate
a zip code. When you learn about classes
in the next section of this chapter, you'll
see a shorthand notation for representing
numerals.

B When you use curly braces to specify a
number of characters, you must always
include the minimum number, but the
maximum is optional. Thus a{3} and
a{3,} are acceptable, but a{, 3} isn't.

403

SYIAILNVND ONISN

USING CLASSES

Chapter 13

Using Classes Table 13.4

As the preceding example demonstrates, try- Character Classes

ing to factor in a range of possible characters CLass Meanine

(like every numeral) can make for tedious La-z] Any lowercase letter

patterns. This would be even worse if you La-2zA-Z] Any letter

wanted to check for any ten-letter word (in [0-9] Any numeral

which case there would be 26 allowable char- [\FAr\t\n\v] | Any white space

acters). As a shorthand notation for com- Laeiou] Any vowel
[[:alnum:]] Any letter or number

monly searched characters, you can define

and utilize classes (more formally referred to [L:alpha:]] Any letter (same as [a-zA-Z])
as character classes). [[:blank:]1] Any tabs or spaces
[[:digit:]1] Any numeral(same as [0-9])
You create classes by placing characters [[:lower:]] Any lowercase letter
within square brackets ([]). For example, [[:upper:1] Any uppercase letter
you can match any vowel with [aeoiu]. Or, [[:punct:]] Any punctuation character (., ; : -)
you can use the hyphen to indicate a range [[:space:]1] Any white space
of characters: [a-z] matches any lowercase
letter, [A-Z] matches any uppercase letter,
and [0-9] matches any digit. 800 Testing Regular Expression Patterns =
Classes can also use quantifiers: A[a-z]{3}$ }1‘;;:?;‘?;" checking
matches any lowercase word that’s three letters against
long. Or, you can combine multiple ranges i’;‘{f"};ﬂfﬁs!}“‘[""]{“ms
within a class: [A-Za-z] is any letter, and
[A-Za-z0-9] is any alphanumeric character. Regular Expeession Fatterm: | M0-9Ksbi-[0-o 1ot

. . Test String: | 16803-3211
One odd thing you should remember is &

that, within the square brackets, the caret

symbol—which is normally used to indicate
an accepted beginning of a string—is used
to exclude a character. So, [Aa] matches any
character thatisn't a.

Figure 13.13 This pattern allows for any valid U.S.
zip code.

PHP defines some classes that will be most
useful to you in your programming (Table
13.4). These classes have slightly different
notations but are used the same way.

By defining your own classes and using those
built into PHP, you can make better patterns
for regular expressions.

404

Regular Expressions

800 Testing Regular Expression Patterns =

The result of checking
Peter O'Toole

against

Aa-z'-KZ}$

is TRUE!

Regular Expression Pattern: |Afa-z '-){2 13

Test String: Peter O'Toole

Figure 13.14 The pattern being used here—
Ala-z '-1{2,}$—checks for a valid name value.

800 Testing Regular Expression Patterns (=]

The result of checking
Peter MN'Toole

against
Ma-z\'-HZ,}§

is TRUE!

Regular Expression Pattern: |Afa-z \'.-}{2,)8

Test String: | eter 04 Taole

Figure 13.15 If Magic Quotes is enabled, the apostrophe
character will be escaped automatically.

v Tips

B The biggest problem with using regular
expressions is coming up with a pattern
that is neither too strict nor too loose. For
example, while the pattern for testing a
valid name is fairly good, it still wouldn't
allow some names (like Danish ones). As
a programmer, your goal is to find the pat-
tern that is appropriately strict enough for
the task at hand.

B The dollar sign and the period have no
special meaning inside of a class.

B Some operating systems throw errors
if you use the hyphen in a class without
marking a range. In other words, [a-z]
is okay, but ['.-] isn't. To work around
this, you can escape the hyphen with the
backslash: A[a-z '.\-]1{2,}$.

To use classes:

1. Load test_pattern.php in your Web
browser, if it isn't loaded already.

2. Enter A([0-9]{5})(-[0-9]1{4})?$ as your
pattern and a five- or ten-digit zip code
as your string, and submit the form to see
the results (Figure 13.13).

This is the zip code pattern mentioned
in the first section of this chapter—now
you can understand what it means. The
caret indicates that the submitted string
must begin with what follows. In the first
parentheses, it's indicated that five digits
are required, using the [0-9] class.

The second parenthetical starts with the
hyphen. Then four digits are required. This
whole grouping can either exist or not
(the question mark indicates that zero or
one of this grouping is valid). The dollar
sign marks the conclusion of the pattern.

Using this pattern, zip codes like 12345
and 12345-6789 will match, whereas
123456789 and 12345- won't.

3. Test the patternA[a-z '.-]1{2,}$ against
common names (Figure 13.14).
To check that someone entered a valid
name, use this loose pattern. It has a
class that allows for letters, spaces, an
apostrophe, a period, and a hyphen. This
pattern successfully matches names like
Homer J. Simpson, Peter O’Toole, and
Joe Bagadonuts.

If you see results like those in Figure
13.15, you'e probably using an older
version of PHP that has Magic Quotes
enabled. See the sidebar earlier in the
chapter for the code youd use to undo
the effects of Magic Quotes.

4. Continue testing until youre comfortable
working with character classes.

405

SISSV1) ONIS)

MATCHING AND REPLACING PATTERNS

Chapter 13

Matching and Replacing
Patterns

The ereg() and eregi() functions are
great for validating strings, but you can
take your programming one step further
by matching a pattern and then replacing
it with a slightly different pattern or with
specific text. The syntax for using the two
functions is as follows:

eregi_replace('pattern', 'replace',
'string');
or

$pattern = 'pattern';

$replace = 'replace’;

$string = 'string';

$new_string = eregi_replace($pattern,
$replace, $string);

You might want to use this approach to turn
a user-entered Web site address (a URL) into
a clickable HTML link, by encapsulating it in
1link tags. Let’s write a
new script to do just that.

To match and replace a pattern:

1. Begin anew PHP document in your text
editor or IDE (Script 13.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

<title>Make URL Click-able</title>
</head>
<body>

continues on page 408

406

Regular Expressions

Script 13.2 The eregi_replace() function can be used to turn a user-submitted URL into a hot-clickable link
automatically. This is possible due largely to back referencing.

eee = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

6 <title>Make URL Click-able</title>

7 </head>

8 <body>

9 <?php // Script 13.2 - convert_url.php

10 /* This script turns a valid URL into an HTML link. */

11

12 if (isset($_POST['submitted'])) { // Has the form been submitted?

13

14 // Trim off extraneous spaces, just in case:

15 $url = trim($_POST['url']);

16

17 // Establish the patterns:

18 $patternl = "A(Chttplhttps|ftp)://){1}([[:alnum:]-1)+(\.)([[:alnum:]-1){2,6}
CLL:alnum:]/+=%&_.~?7-1*)$";

19 $pattern2 = "AC[[:alnum:]1-DD+(\.)C([[:alnum:]1-1){2,6}([[:alnum:]/+=%&_.~?-1%)$";

20

21 // Test the submitted value against the patterns....

22 if (eregi($patternl, $url)) { // Check for an existing http/https/ftp.

23

24 $url = eregi_replace($patternl, '\\0', $url);

25 print "<p>Here is the URL: $url
The code is now: " . htmlentities ($url) . '</p>';

26

27 } elseif (eregi($pattern2, $url)) { // No http/https/ftp, add http://.

28

29 $url = eregi_replace($pattern2, '\\0', $url);

30 print "<p>Here is the URL: $url
The code is now: " . htmlentities ($url) . '</p>';

31

32 } else { // Invalid URL.

33 print'<p>Please enter a valid URL.</p>';

34 }

35

36 1} // End of main conditional.

37 // Display the HTML form:

38 7>

39 <form action="convert_url.php" method="post">

40 <p>URL: <input type="text" name="url" size="30" /></p>

41 <input type="submit" name="submit" value="Convert" />

42 <input type="hidden" name="submitted" value="true" />

43 </form>

44 </body>

45 </html>

407

SNY3LLVd ONIDVIdIY ANV ONIHIOLVIA

MATCHING AND REPLACING PATTERNS

Chapter 13

2. Start the PHP section:
<?php // Script 13.2 - convert_url.
php

3. Check that the form has been submitted,
and trim spaces from the submitted URL:

if (isset($_POST['submitted'])) {
$url = trim($_POST['url']);

4. Establish the patterns being used:
$patternl = '"A(Chttplhttps|ftp)://)
{13CLL:alnum:]-1)+\.)
([L:alnum:]1-1){2,6}
(LL:alnum:]/+=%&_.~?-1%)$";
$pattern2 = "AC[[:alnum:1-1)+C(\.)
([L:alnum:]1-1){2,6}
([L:alnum:]/+=%8&_.~?-1*%)$";
These two patterns are essentially the
same except that the first tests for the
presence of http://, https://, and fip://
whereas the second one doesn't. You'll
see why in Steps 6 and 7.

Both patterns are fairly generic. They

test for the presence of letters, digits, and
the hyphen. Then they check for a single
period, followed by a two- to six-letter sec-
tion (.com, .edu, .travel, and so on). After
that can come pretty much anything. This
pattern allows for extra domains (.uk),
pathnames (/directory), and so forth.

5. Test the submitted URL against the
first pattern:
if (eregi($patternl, Surl)) {
The if-elseif-else conditionalis the
heart of the script. It begins by checking
for a URL that matches the first pattern
(in other words, a URL that begins with
http://, https://, ox fip://).

408

Regular Expressions

6.

Make the code replacement, and print
the results:
$url = eregi_replace($patterni,
'\\0", $url);
print "<p>Here is the URL: $url
The code is now: " . htmlentities
Surl) . '</p>';
If the first pattern is matched, then the
URL is turned into the URL enclosed
within tags. This con-
verted URL is printed so that it appears
as a clickable link. It's also printed after
being run through the htmlentities()
function so that you can see the gener-
ated code without looking at the source.

. Repeat Step 6 using the second pattern:

} elseif (eregi($pattern2, $url)) {
$url = eregi_replace($pattern2,
'\\0",
$url);
print "<p>Here is the URL:
$url
The code is now:
htmlentities ($url) . '</p>';
If the submitted URL matches the second
pattern, then it doesn’t begin with Azp://,
https://, or fip://. In this case, most of the
code is the same as in Step 7, except that
the URL is preceded with Attp:// to make
it a valid link.

"

Print a message if the URL is invalid:
} else {

print'<p>Please enter a valid
URL.</p>";

}
If the submitted URL doesn't match either
of the patterns, an error message is printed.

Complete the main conditional, and close
the PHP code:

}

7>

continues on next page

409

SNY3LLVd ONIDVIdIY ANV ONIHIOLVIA

MATCHING AND REPLACING PATTERNS

Chapter 13

10.

11.

12.

13.

v

Create the HTML form:
<form action="convert_url.php"
method="post">
<p>URL: <input type="text"
name="url" size="30" /></p>
<input type="submit" name=
"submit" value="Convert" />
<input type="hidden" name=
"submitted" value="true" />
</form>

This form just has a URL text input.

Complete the HTML page:
</body>
</html>

Save the script as convert_url.php,
place it in the proper directory for your
PHP-enabled server, and run the page in
your Web browser.

Test the script using a valid URL
(Figure 13.16).

Tips

Iferegi_replace() doesn’t find a match,
the original string is returned.

The ereg() and eregi() functions can
also return matched patterns in an
optional third argument, meaning that
the code in this example could be repli-
cated using those two functions.

The split() and spliti() functions
work like explode() in that they turn a
string into an array. The difference is that
these functions let you use regular expres-
sions to define the separator.

The Perl-compatible version of the ereg_
replace() function is preg_replace().

Make URL Click-able

The code is now: <a hr\:f— hllp waw DMClnsights comfphorum
Mist.php?23">www.DMClnsights .com/phorum/list.php?23

URL:

Figure 13.16 Thanks to the eregi_replace()
function, a submitted URL, with or without the
http:// prefix, is turned into a clickable link.

Back Referencing

There is one more concept to discuss with
regard to establishing patterns and mak-
ing replacements: back referencing.

In the zip code matching pattern,
A([0-9]1{5})(-[0-91{4})?$, notice that
there are two groupings within paren-
theses—([0-9]{5}) and (-[0-9]1{4}).
Within a regular expression pattern, PHP
automatically numbers parenthetical
groupings beginning at 1. Back referenc-
ing allows you to refer to each individual
section by using a double backslash (\\)
in front of the corresponding number.
For example, if you match the zip code
94710-0001 with this pattern, referring
back to \\1 will give you 94710.

This may make more sense once you see
the example. It refers to \\@, which repre-
sents the entire, matched URL.

410

INSTALLATION
AND CONFIGURATION

There are three technical requirements for
executing all of the examples: MySQL (the
database application), PHP (the scripting
language), and the Web serving application
(that PHP runs through). In this appendix I
will describe the installation of these tools

on two different platforms—Windows and
Macintosh. If you are using a hosted Web site,
all of this will already be provided for you, but
these products are all free and easy enough to
install, so putting them on your own com-
puter still makes sense.

After the installation section, this appendix
demonstrates some basics for working with
MySQL and configuring PHP. The PHP and
MySQL manuals cover installation and con-
figuration in a reasonable amount of detail.
You may want to also peruse them, particu-
larly if you encounter problems.

Before getting into the particulars, there's one
little heads-up: PHP 6 has not been formally
released at the time of this writing. I was able
to use PHP 6 for all of the examples by build-
ing my own installation of PHP 6 for both
Windows and Mac. However, in these steps

I highly recommend using premade install-
ers, so what you'll see in this appendix are
installers and images for PHP 5. When PHP

6 is formally released, these installers will
undoubtedly be updated and the steps will
likely be the same or very nearly so.

411

NOILYINOIANO) ANV NOILVYTIVLSN]

INSTALLATION ON WINDOWS

Appendix A

Installation on Windows

In previous versions of this book I've advo-
cated that Windows users take advantage of
the available, and free, all-in-one installers.
These programs will install and configure the
Web server (like Apache, Abyss, or IIS), PHP,
and MySQL for you. In past editions, after
making that recommendation, I have also
demonstrated how to install PHP and MySQL
individually yourself. But repeated changes
in those installation steps and multiple ques-
tions from readers having problems have
convinced me to cut to the chase and walk
through the all-in-one steps instead.

There are several all-in-one installers out
there for Windows. The two that I see
mentioned most frequently are XAMPP
(www.apachefriends.org) and WAMP
(www.wampserver . com). For this appendix,
I'll use XAMPP, which runs on Windows
2000, 2003, XP, and Vista.

Along with Apache, PHP, and MySQL,
XAMPP also installs:

¢ PEAR, alibrary of PHP code

¢ phpMyAdmin, the Web-based interface to
a MySQL server

¢ A mail server (for sending email)
& Several useful extensions

At the time of this writing XAMPP (Version
1.6.8) installs both PHP 5.2.6 and 4.4.9, MySQL
5.0.67, Apache 2.2.9, and phpMyAdmin 2.11.9.2.

I'll run through the installation process in
these next steps. Note that if you have any
problems, you can use the book’s supporting
forum (www.DMCInsights.com/phorum/), but
you'll probably have more luck turning to
the XAMPP site (it is their product, after all).
Also, the installer works really well and isn't
that hard to use, so rather than detail every
single step in the process, I'll highlight the
most important considerations.

On Firewalls

A firewall prevents communication over
ports (a port being an access point to a
computer). Versions of Windows starting
with Service Pack 2 of XP include a built-in
firewall. You can also download and install
third-party firewalls, like ZoneAlarm.
Firewalls improve the security of your com-
puter, but they will also interfere with your
ability to run Apache, MySQL, and some
of the other tools used by XAMPP because
these all use ports.

If you see a message like that in Figure A.5,
choose Unblock. Otherwise, you can con-
figure your firewall manually (for example,
on Windows XP, it's done through Control
Panel > Security Center). The ports that
need to be open are: 80 (for Apache), 3306
(for MySQL), and 25 (for the Mercury mail
server). If you have any problems start-

ing or accessing one of these, disable your
firewall and see if it works then. If so, you'll
know the firewall is the problem and that it
needs to be reconfigured.

Just to be clear, firewalls aren’t found just
on Windows, but in terms of the instruc-
tions in this appendix, the presence of a
firewall will more likely trip up a Windows
user than any other.

412

www.apachefriends.org
www.wampserver.com
www.DMCInsights.com/phorum/

Installation and Configuration

XAMPP for Windows 1,68, 2008/09/28

o Srm Contant
| XAMPP Windows 1.6.8 Apache WTTED 7.2.5, MySQL 5067, FRP 578 + 4.4.5 + PRAR + Swilch,

Cpendsl 0N, PHPHYASTIN 1.11.9.2, KAMPP Controd Pical 1.5, Webalter

[Basic package] 251-10, Werciiry Mas TFRnagor Symem va Sk, MileZita FIF Server 0.9.27,

| SQuRE 2815, ADODS 4 6, Zend Cpomizer 33,0, P Sacumy, Mng,
o Wirsdows 2000, 003, AP, VISTA, Ser ahs 1

ll 1nstaier 38 MB Installer

| Ftl S MB ZIP archive

| I EXE (7-zip 33 MB Selfextracting 7-ZIP archive

Figure A.1 From the Apache Friends Web site, grab
the latest installer for Windows.

B3 XAMPP 1.6.8 win32 (Basic Package)

Choose Install Location
Choose the folder in which bo install AMPP 1.6.8,

Setup will install XAMPP 16,8 in the following folder. To installin a different folder, dlick
Browse and select anather folder, Click Mest to continue.

Destination Folder

| [mrowse.. |

Space required: 237.7MB
Space avallable: 24.1GB

[<pack J[met>] [concel]

Figure A.2 Select where XAMPP should be installed.

B3 XAMPP 1.6.8 win32 (Basic Package)

XAMPP Options
Install options on NT/Z000/XP Professional systems.

HAMPP DESKTOP
[Jcreate a sampp deskkop icon

HAMPP START MENU

[#]Create an Apache Friends %AMPP folder in the start menu
SERWICE SECTION

[¥]Install Apache as service

[mstall MySOL as service
[CI1nstall Filezilla as servics

S also the HAMPR for Windows FAG Page

System v2.35

< Back L Install J Cancel

Figure A.3 The XAMPP options I'd recommend using.

To install XAMPP on Windows:

1. Download the latest release of XAMPP for
Windows from www. apachefriends.org.
You'll need to click around a bit to find the
download section, but eventually you'll
come to an area like that in Figure A.1.
Then click Installer, which is the specific
item you want.

2. Onyour computer, double-click the
downloaded file in order to begin the
installation process.

3. Click your way through the installation
process.

4. When prompted (Figure A.2), install
XAMPP somewhere other than in the
Program Files directory.

You shouldn't install it in the Program
Files directory because of a permissions
issue in Windows Vista. I'd recommend
installing XAMPP in your root directory
(e.g.. C:\).

Wherever you decide to install the pro-
gram, make note of that location, as you'll
need to know it several other times as you
work through this appendix.

5. If given the option, install both Apache
and MySQL as services (Figure A.3).
Installing them as services just changes
how they can be started and stopped,
among other things.

continues on next page

413

SMOGANIM NO NOILVTIVLSN]

www.apachefriends.org

INSTALLATION ON WINDOWS

Appendix A

6. After the installation process has done its
thing, click Finish (Figure A.4).
After you click Finish, a DOS prompt
(aka console window) will open up for
XAMPP to try a couple of things. If you see
amessage like that in Figure A.5, choose
the Unblock option (see the sidebar “On
Firewalls” for more on this subject).

7. To start, stop, and configure XAMPP, open
the XAMPP Control Panel (Figure A.6).

A shortcut to the control panel may be
created on your Desktop and in your Start
menu, if you checked those options in
Figure A.3.

8. Using the control panel, start Mercury
(see Figure A.6).
This is the mail server that XAMPP
installs. It needs to be running in order
to send email using PHP (see Chapter 8,
“Creating Web Applications”).

9. Immediately set a password for the root
MySQL user.

How you do this is explained later in
the chapter.

v Tips

B See the configuration section at the end
of this chapter to learn how to configure
PHP by editing the php. ini file.

B Your Web root directory—where your
PHP scripts should be placed in order
to test them—is the htdocs folder in the
directory where XAMPP was installed.
For my installation (see Figure A.2), this
would be C:\xampp\htdocs.

B3 XAMPP 1.6.8 win3z (Basic Package) ‘;]:

Completing the XAMPP 1.6.8 Setup
Wizard

AMPF 16,8 has been installed on your computer.

Click Finish ko close this wizard,

Figure A.4 Installation is complete!

indows Security Alert EI

To help protect your computer. Windows Firewall has blocked
some features of this program.

Do pou want to keep blocking this program?

\ Marne: Apache HTTP Server

Publizher: Apache Saftware Foundation

[K.eep Blocking H Unblack H Ask Me Later

‘windows Firewall has blocked this program from accepling connections from the
Internet or a network. |f you recognize the pragram or trust the publisher, pou can
unblock it. When should | unblock a program?

Figure A.5 If you’re running a firewall of any kind,
you’ll see some messages like this when Apache and,
possibly, the other applications are started. See the
sidebar “On Firewalls” for more.

B3 XAMPP Control Panel Application

®AMPP Control Panel

~Modules

Status
‘ 5 Apache Runnin i
[sve P g Stop Admi T

|
Swe MySgl Running Sto
2

Ao
elp
Mercur Runnin 2

m] ¥ E | e |

MAMPP Comtrol Pamel Versiom 2.5 (5. May, 2007)
Windows £.1 Build 2600 Platform 2 Service Pack 3
Current Directory: co:lxampp

Install Directory: c:lxampp

Status Check OR

Eusy. ..

Mercury started [Port 25]

| | »

Figure A.6 The XAMPP Control Panel, your gateway to
using all of the installed software.

414

Installation and Configuration

Installation on Mac OS X

Thanks to some ready-made packages,
installing MySQL and PHP on Mac OS X used
to be surprisingly easy (and may still be). Mac
OS X already uses Apache as its Web server
and comes with a version of PHP installed
but not enabled. Thanks to Marc Liyanage
(www . entropy.ch), who does a ton of work
supporting the Mac operating system, more
current and feature-rich versions of PHP can
be easily installed.

I say that installation “used to be” and “may
still be” easy because it depends upon the
hardware and operating system you'e using.
The most current Macs at the time of this writ-
ing use Intel 64-bit processors. These com-
puters can run 32-bit or 64-bit software. The
Apache built into Mac OS X 10.5 (Leopard) is a
64-bit version, meaning that PHP must also be
a 64-bit version, as must every library that PHP
uses. This is not easily done.

Because of the complications that have
arisen from Mac OS X 10.5 using the 64-bit
version of Apache (if possible), I've decided
to take a more universally foolproof route
and recommend that you use the all-in-one
MAMP installer (www.mamp . info). It’s avail-
able in both free and commercial versions, is
very easy to use, and won't affect the Apache
server built into the operating system.

Along with Apache, PHP, and MySQL, MAMP
also installs phpMyAdmin, the Web-based
interface to a MySQL server, and lots of useful
PHP extensions. At the time of this writing
MAMP (Version 1.7.2) installs both PHP 5.2.6
and 4.4.8, MySQL 5.0.41, Apache 2.0.59, and
phpMyAdmin 2.11.7.1.

continues on next page

415

X SO OVYW NO NOILVTIVLSN|

www.entropy.ch
www.mamp.info

INSTALLATION ON MAC OS X

Appendix A

I'll run through the installation process in
these next steps. Note that if you have any
problems, you can use the book’s supporting
forum (www.DMCInsights.com/phorum/), but
you'll probably have more luck turning to the
MAMP site (it is their product, after all). Also,
the installer works really well and isn't that
hard to use, so rather than detail every single
step in the process, I'll highlight the most
important considerations.

To install MAMP on Mac OS X:

1. Download the latest release of MAMP
from www.mamp . info.

From the front page, click Download, and
then click MAMP & MAMP PRO 1.7.2.
(Figure A.7). The same downloaded file is
used for both products. (As new releases
of MAMP come out, the link and filename
will obviously change accordingly.)

2. Onyour computer, double-click the
downloaded file in order to mount the
disk image (Figure A.8).

3. Copy the MAMP folder from the disk
image to your Applications folder.
If you think you might prefer the commer-
cial MAMP PRO, copy that folder instead.
It comes with a free 14-day trial period.
Whichever folder you choose, note that
you must place it within the Applications
folder. It cannot go in a subfolder or
another directory on your computer.

4. Open the Applications/MAMP (or
Applications/MAMP PRO) folder.

MAMP & MAMP PRO Downloads

Hern, you £an find the installation fies Bnd User uide’s for MAMP and MAMP PRO. Since version 1.6 bath
arw located on & single installation DMG il

You £an find furher INForMAtion on the dsplayed downinans

MAMP & MAMP PRO 1.7.2

Peattrm:; Universal Baary
fo.- W ==
Filesize: 130 MD
‘ Languages: ngiish, german, french, Japanese

MAMP PAD User Manual

Figure A.7 Download MAMP from this page at
www.mamp . info.

MAMP

run your server locally

Figure A.8 The contents of the downloaded MAMP
disk image.

MAMP

manage your website locally

Status

(Stop Servers)
Open start page

@@ Apache Server
@& MySQL Server

Figure A.9 The simple MAMP application, used to
control and configure Apache, PHP, and MySQL.

416

www.DMCInsights.com/phorum/
www.mamp.info
www.mamp.info

Installation and Configuration

cel) MAE‘P
it Orewmts Ouevttrisee: Ohtstimages Pt el

Weicome to MAMP

&g Mave PR

& | T

| EE e i |
'O 'O'a'0 s [ED d

Figure A.10 The MAMP start page.

——{ Start/Stop | Ports PHP Apache }—

‘ ¥ Start Servers when starting MAMP

Stop Servers when quitting MAMP
"1 Check for MAMP PRO when starting MAMP V

EOpen start page at startup
Start page url
[7mAMP/ |

(Cancel) M

‘ ™ Preferences. .. T

1

Figure A.11 These five options dictate what happens

when you start and stop the MAMP application.

5. Double-click the MAMP (or MAMP
PRO) application to start the program
(Figure A.9).
It may take just a brief moment to start
the servers, but then you'll see a result like
that in Figure A.9.

A start page should also open in your
default Web browser (Figure A.10).
Through this page you can view the ver-
sion of PHP that’s running, as well as how
it’s configured, and interface with the
MySQL database using phpMyAdmin.

6. To start, stop, and configure MAMP, use
the MAMP application (Figure A.9).

There's not much to the application itself
(which is a good thing), but if you click
Preferences, you can tweak the application’s
behavior (Figure A.11), set the version of
PHP to run (Figure A.12), and more.

continues on next page

- Start/Stop ~ Ports I-FHP»-{ Apache —

PHP Version PHP E
[17]
Ompe || # Zend Optimizer y
@PHPS IR

eAccelerator
XCache

Figure A.12 Because MAMP comes with multiple
versions of PHP, you can choose which you’d like to
use. You can also enable the Zend Optimizer and a
cache for improved performance.

417

X SO JVIN NO NOILVTIVLSN|

INSTALLATION ON MAC OS X

Appendix A

7. Immediately set a password for the root
MySQL user.
How you do this is explained later in
the chapter.

v Tips

B See the configuration section at the end
of this chapter to learn how to configure
PHP by editing the php. ini file.

B You may want to change the Apache
Document Root (Figure A.13) to the
Sites directory in your home folder.

By doing so, you assure that your Web
documents will backed up along with
your other files (and you are performing
regular backups, right?).

B MAMP also comes with a Dashboard

widget you can use to control the Apache

and MySQL servers.

B Your Web root directory—where your
PHP scripts should be placed in order
to test them—is the htdocs folder in the
directory where MAMP was installed.
For my installation, this would be
Applications/MAMP/htdocs.

~— Start/Stop Ports PHP | Apache }—

Document Root
| /Applications /MAMP/htdocs \

C Select...)

(Cancel)E—ﬁl@—)

T Preferences... T

Figure A.13 MAMP allows you to change where the
Web documents are placed.

418

Installation and Configuration

=+ Command Prompt

icrosoft Windows XP [Uersion 5.1.26088]
(C> Copyright 1985-2801 Microsoft Corp.

:NDocuments and Settings“dministrator>

al | AW]

Figure A.14 A command prompt on Windows.

Using the MySQL Client

The MySQL software comes with an impor-
tant tool called the MySQL client. This
application provides an interface for com-
municating with the MySQL server. It's a
command-line tool that must be accessed
using the Terminal application on Linux and
Mac OS X or through the command (DOS)
prompt on Windows.

To use the MySQL client:
1. Make sure the MySQL server is running,
2. Find the MySQL bin directory.

To connect to the client, you'll need to
know where it’s located. The MySQL
client is found within the bin directory
for your installation. I'll run through the
common possibilities...

If you installed MySQL yourself, the
client’s location depends on where you
installed the software, but it's most likely
C:\mysql\bin\mysql (Windows)

or

/usr/local/mysql/bin/mysql (Mac OS X
and Unix)

If you used XAMPP on Windows, it’s C:\
xampp\mysql\bin\mysql (assuming you
installed XAMPP in C:\). If you installed
MAMP on Mac OS X, the MySQL direc-
toryis /Applications/MAMP/Library/
bin/mysql.

3. Access acommand prompt.
On Mac OS X and Unix, you can accom-
plish this by running the Terminal appli-
cation. On Mac OS X, it’s found within the
Applications/Utilities folder.
On Windows, click the Start menu, select
Run, and then type cmd and press Enter at
the prompt (Figure A.14).

continues on next page

419

LIN31T) TOSAW IHL ONISN

UsING THE MYSQL CLIENT

Appendix A

4.

Attempt to connect to the MySQL client.
To connect, enter the pathname identi-
fied in Step 2 plus -u username -p. So, the
command might be

c:\mysql\bin\mysql -u username -p
(Windows)

or

/usr/local/mysql/bin/mysql -u user-
name -p (Unix and Mac OS X)

or

C:\xampp\mysql\bin\mysql -u username
-p (Windows)

or
/Applications/MAMP/Library/bin/mysql
-u username -p (Mac 0OS X)

Replace username with the user name you
want to use. If you haven't yet created any
other users, this will be root (root is the
supreme MySQL user). If you haven't yet
established a root user password, you can
omit the -p flag.

Enter the password at the prompt
(Figure A.15).

The password requested is the MySQL
password for the user named during the
connection. You'll see this prompt only if
you used the -p option in Step 4.

If you installed MAMP on Mac OS X, the
password for the root user will be root.

+ Command Prompt - C:\xamppimysglAbin\mysql -u reot -p

Enter password:
elcome to the MySQL monitor. Commands end with ; or “g.
Your MySQL connection id is

Type 'help;’ or ‘“~h' for help. Type *“c’' to clear the buffer.
mysgl>

<]

:C:sxamppsnysglsbinsmysgl —u »oot —p l
T

Server version: 5.0.67—community—nt MySQL Community Edition (GPL>

-

=i

Figure A.15 Successfully accessing the MySQL client on Windows.

420

Installation and Configuration

»)0 PHP: Visual Quic t Guide

@ Adpplicotions/MAMPALibraryv/bindmesql -u root -p

=
Enter password: E
Welcome to the MySOL monitor. Commands end with ;3 or g,
Your MySOL connection id is 11
A
[z

Server version: B.A.41 Source distribution

Type ‘help;' or 'sh' for help. Type 'c' to cleor the buffer.

my=als SHOW DATABASES;

| information_schema |
| mysql |
| test |
e +
3 rows in set (A.8A sec)

mysq L= I

Figure A.16 After a fresh MySQL installation, you’ll
see only the three default databases.

6. List the available databases (Figure A.16):
SHOW DATABASES;

The SHOW DATABASES command is an SQL
query that lists every database hosted on
that MySQL installation that the con-
nected user can see.

7. Exit the MySQL client.
To do so, type exit or quit.

v Tips

B Ifyouseea Can't connect to local MySQL
server through socket... error message, it
normally means MySQL isn't running.

B Remember that the MySQL client is your
best tool for debugging PHP scripts that
work with MySQL. You can use the MySQL
client to check user permissions and to run
queries outside of the PHP script.

421

LIN31T) TOSAW IHL ONISN

CREATING MYSQL USERS

Appendix A

Creating MySQL Users

Once you've successfully installed MySQL,
you need to begin creating users. The initial
MySQL installation comes with one user
(named root) with no password set (except
when using MAMP, which sets a default pass-
word of root). At the very least, you should
create a new password for this user.

After that, you can create other users with
more limited permissions. As a rule, you
shouldn’t use the root user for normal,
day-to-day operations.

Setting the root user password

One of the first uses of the MySQL client is
to assign a password to the root user. When
you install MySQL, no value—or no secure
password—is established. This is certainly a
security risk that should be remedied before
you begin to use the server. Just to clarify,
your databases can have several users, just
as your operating system might. MySQL
users are different from operating system
users, even if they share a common name.
Therefore, the MySQL root user is a different
entity than the operating system’s root user—
it has different powers and even different
passwords (preferably but not necessarily).

Most importantly, understand that the
MySQL server must be running in order for
you to use the MySQL client. If MySQL isn't
currently running, start it now using the
steps outlined earlier in the appendix.

422

Installation and Configuration

To assign a password to the root user:

1. Connect to the MySQL client.

See the preceding set of steps for detailed
instructions.

. Enter the following command, replacing

thepassword with the password you want
to use (Figure A.17):

SET PASSWORD FOR 'root'@'localhost'

= PASSWORD('thepassword');
Keep in mind that passwords in MySQL
are case-sensitive, so Kazan and kazan
aren't interchangeable. The term PASSWORD
that precedes the actual quoted pass-
word tells MySQL to encrypt that string.
And there cannot be a space between
PASSWORD and the opening parentheses.

. Exit MySQL:

exit

. Test the new password by logging in to

the MySQL client again.

Now that a password has been estab-
lished, you need to add the -p flag to the
connection command. You'll see an Enter
password: prompt, where you enter the
just-created password.

e+ Command Prompt - C:\xampp\mysql\binimysql -u root -p

ysgl> SET PASSWORD FOR ' yoot’R’localhost’ = PASSWORDC password’);)=
uery 0K, B rows affected (B.87 sec

| H 4

Figure A.17 You should establish a secure root user’s password immediately after you install

the software.

423

S¥3S TOSAW 9ONILYIYN)

CREATING MYSQL USERS

Appendix A

Creating users and privileges Table A.1

After you have MySQL successfully up and MySQL Privileges

running, and after you've established a PRIVILEGE ALLOWS

password for the root user, it’s time to begin SELECT Read rows from tables.

adding other users. To improve the security INSERT Add new rows of data to tables.

of your databases, you should always create UPDATE Alter existing data in tables.

new users to access your databases rather DELETE Remove existing data from tables.

than using the root user at all times. INDEX Create and drop indexes in tables.
ALTER Modify the structure of a table.

The MySQL privileges system was designed CREATE Create new tables or databases.

to ensure proper authority for certain com- DROP Delete existing tables or databases.

mands on specific databases. This technol- RELOAD Reload the grant tables (and therefore

ogy is how a Web host, for example, can let enact user changes).

several users access several databases with- SHUTDOWN Stop the MySQL server.

out concern. Each user in the MySQL system PROCESS View and stop existing MySQL processes.

can have specific capabilities on specific FILE Import data into tables from text files.

databases from specific hosts (computers). GRANT Create new users.

The root user—the MySQL root user, not the REVOKE Remove users’ permissions.

systems—has the most power and is used to
create sub-users, although sub-users can be
given rootlike powers (inadvisably so).

When a user attempts to do something with
the MySQL server, MySQL first checks to
see if the user has permission to connect to
the server at all (based on the user name,
the user’s password, and the information in
the MySQL database’s user table). Second,
MySQL checks to see if the user has permis-
sion to run the specific SQL statement on the
specific databases—for example, to select
data, insert data, or create a new table.
Table A.1 lists the various privileges you
can set on a user-by-user basis.

There are a handful of ways to set users and
privileges in MySQL, but it'’s recommended
that you do it manually using the MySQL
client and the GRANT command. The syntax
goes like this:

GRANT privileges ON database.* TO
'username' IDENTIFIED BY 'password';

For the privileges aspect of this statement,
you can list specific privileges from Table A.1,
or you can allow for all of them by using ALL

424

Installation and Configuration

(which isn't prudent). The database . * part of
the statement specifies which database and
tables the user can work on. You can name
specific tables using database . tablename
syntax or allow for every database with *. *
(again, not prudent). Finally, you can specify
the user name and a password.

The user name has a maximum length of

16 characters. When youre creating a user
name, be sure to avoid spaces (use the under-
score instead), and note that user names are
case-sensitive.

The password has no length limit but is also
case-sensitive. The passwords are encrypted
in the MySQL database, meaning they can't
be recovered in a plain text format. Omitting
the IDENTIFIED BY 'password' clause results
in that user not being required to enter a pass-
word (which, once again, should be avoided).

Finally, you have the option of limiting users
to particular hostnames. The hostname is
either the name of the computer on which
the MySQL server is running (localhost being
the most common value here) or the name
of the computer from which the user will

be accessing the server. This can even be an
IP address, should you choose. To specify a
particular host, change your statement to

GRANT ALL ON database.* TO
'username'@'hostname' IDENTIFIED
BY 'password';

To allow for any host, use the hostname wild-
card character (%):

GRANT ALL ON database.* TO
'username'@'%' IDENTIFIED BY
'password";

As an example of this process, you'll create
two new users with specific privileges on the
temp database. Keep in mind that you can
only grant permissions to users on existing
databases. This next sequence will also show
how to create a database.

425

S¥3S TOSAW 9ONILYIYN)

CREATING MYSQL USERS

Appendix A

To create new users:

1.

Log in to the MySQL clien r T.
ogin to the MySQL client as a root use myzqls CREATE DATABASE temp;

Use the steps already explained to do this. Query OK, 1 row affected (.87 sec)

You must be logged in as a user capable of wysql= |

il
i
v
P

creating databases and other users.
Figure A.18 Creating a new database.
Create a new database (Figure A.18):

CREATE DATABASE temp;

If your MySQL server doesn't yet have a
temp database, create one using CREATE
DATABASE temp (followed by a semicolon,
as is required by the MySQL client).

Create a user with administrative-

level privileges on the temp database

(Figure A.19):

GRANT SELECT, INSERT, UPDATE,
DELETE, CREATE, DROP, ALTER, INDEX
ON temp.* TO '"llama'@'localhost’
IDENTIFIED BY 'camel';

This user, llama, can create tables, alter
tables, insert data, update data, and so
forth, on the temp database. This essen-
tially includes every administrative-level
capability aside from creating new users.
Be certain to use a password—perhaps
one more clever than used here—and,
preferably, specify a particular host.

<+ Command Prompt - C:Yxamppimysql\bin\mysgl -u root -p

ysql> GRANT SELECT, INSERT, UPDATE, DELETE. CREATE, DROF,. ALTER. INDEX ON temp.
TO *1lama’®’ localhost’ IDENTIFIED BY ‘camel’;
nery 0K, B rows affected (B.81 secd>

ysgl>

Figure A.19 Creating an administrative-level user for a single database.

¢+ Command Prompt - C:Yxamppimysql\bin\mysgl -u root -p

ysgl> GRANT SELECT, INSERT. UPDATE. DELETE ON temp.* TO ‘webuser’@'localhost’ I
ENTIFIED BY ’BroWslng’;
uery OK. B rows affected {B.81 sec>

ysgl>

Figure A.20 This user has more restricted rights to the same database.

426

Installation and Configuration

ysql> FLUSH PRIVILEGES;
wery OK., B rouws affected (B.88 sec)>

yegql> _

« | »

= Command Prompt - C:\xampp\mysglibi... !EE

Figure A.21 Don’t forget this step before you try to
access MySQL using the newly created users.

4. Create a user with basic access to the

databases (Figure A.20):

GRANT SELECT, INSERT, UPDATE, DELETE
ON temp.* TO 'webuser'@'localhost'
IDENTIFIED BY 'BroWslng';

Now the generic webuser can browse
through records (SELECT from tables) as
well as add, edit, and delete them, but
this user can't alter the structure of the
database. When you'e establishing users
and privileges, work your way from the
bottom up, allowing the bare minimum of
access at all times.

5. Apply the changes (Figure A.21):

FLUSH PRIVILEGES;

The changes just made won't take effect
until you've told MySQL to reset the list of
acceptable users and privileges, which is
what this command does. Forgetting this
step and then being unable to access the
database using the newly created users is
a common mistake.

v Tips

B Any database whose name begins with

test_ can be modified by any user who
has permission to connect to MySQL.
Therefore, be careful not to create a
database named this way unless it truly
is experimental.

The REVOKE command removes users and
permissions.

427

S¥3S TOSAW 9ONILYIYN)

PHP CONFIGURATION

Appendix A

PHP Configuration

One of the benefits of installing your own ver-
sion of PHP is that you can configure it as you
prefer. How PHP runs is determined by the
php.1ini file, which is normally created when
PHP is installed.

Two of the most important settings you may
want to consider tweaking are display_errors
and error_reporting (both are discussed

in Chapter 3, “HTML Forms and PHP"). To
change any setting, open the PHP configura-
tion file, edit it as needed, then save it, and
restart the Web server.

To alter PHP’s configuration:

1. Open thephp.ini file in any text editor.

The file’s location on your computer
depends on many things. The best way to
find it is to run a phpinfo() script in your
Web browser (Figure A.22).

2. Change the settings as you wish.
Depending on your operating system, you
may need authority to make changes to
this file.

Many instructions are included in the file.
Lines are commented out (made inactive)
by preceding them with a semicolon.

Save the php.ini file.

=

Restart your Web server.

You don’t need to restart the entire com-
puter, just the Web server (e.g., Apache).

ann shpinfad [=]

(;Ei) MAMP

pd-sol TS
_Ostut @urorts Ostoyiamn Osrebevsr OAQ ik

Figure A.22 The phpinfo() function prints the
location of the active php.ini file as well as all
the configuration information.

428

Installation and Configuration

Enabling Mail

The mail() function works only if the com-
puter running PHP has access to sendmail
or another mail server. One way to enable
the mail() function is to set the smtp value
in the php. ini file (for Windows only).
This approach works, for example, if your
Internet provider has an SMTP address
you can use. Unfortunately, you can't

use this value if your ISP’s SMTP server
requires authentication.

For Windows, there are also a number

of free SMTP servers, like Mercury. It's
installed along with XAMPP, or you can
install it yourselfif youre not using XAMPP.

Mac OS X comes with a mail server
installed—postfix and/or sendmail—that
needs to be enabled. Search Google for
instructions on manually enabling your
mail server on Mac OS X.

Alternatively, you can search some of the
PHP code libraries to learn how to use an

SMTP server that requires authentication.

v Tips

It’s possible that your computer doesn’t
have a php.ini file. In that case, create
one from scratch or take one from the
downloaded PHP source code.

You can also use the phpinfo() script to
check that your configuration changes
have taken effect.

If you edit the php. ini file and restart the
Web server but your changes don't take
effect, make sure you'e editing the proper
php.ini file (you may have more than one
on your computer).

429

NOILVINOIINO) dHd

This page intentionally left blank

RESOURCES
AND NEXT STEPS

This book was written to give beginning PHP
programmers a good foundation on which

to base their learning. A few topics have been
either omitted or glossed over due to this
book’s more fundamental focus. This appendix
lists a number of useful PHP-related Internet
resources; briefly discusses where to obtain
more information for databases and some
uncovered topics; and includes a few tables,
both old and new.

Along with those sites included here,
you should familiarize yourself with the
book’s companion Web site, found at
www . DMCInsights.com/phpvqgs3/. There
you'll find:

¢ More Web links

¢ All the scripts used in the book

¢ A support forum for your questions
*

An errata page, listing printing errors in
this book (which do happen, sadly)

When the first edition of this book was writ-
ten, few good PHP sites were available. Now
there are literally dozens (and hundreds of
not-so-good ones). The best, most obvious
ones are included here, but a quick Internet
search will always be a great resource for you.

431

Sd3lg 1X3IN ANV S32dN0S3Y

www.DMCInsights.com/phpvqs3/

ONLINE PHP RESOURCES

Appendix B

Online PHP Resources

If you have questions specifically about PHP,
you should be able to find the answer with
ease. This section of the appendix highlights
the best Internet-specific tools for you to use.

The PHP manual

All PHP programmers should familiarize
themselves with and possibly acquire some
version of the PHP manual before beginning
to work with the language. The manual

is available from the official PHP site—

www. php.net/docs.php—as well as from
anumber of other locations.

You can download the manual in nearly a
dozen languages in different formats. The
official Web site also has an annotated ver-
sion of the manual available at www.php.net/
manual/en/ (in English), where users have
added helpful notes and comments. If youre
having problems with a particular function,
reading the manual’s page for that function
will likely provide an answer.

You can quickly access the documentation
page for any specific function by going to
www . php .net/functionname. For example,
the page for the number_format() function
iswww.php.net/number_format.

General PHP Web sites

This section mentions a few of the many useful
Web sites you can turn to when you'e pro-
gramming, but it leaves it up to you to discover
the ones you like best. Most of these also con-
tain links to other PHP-related sites. The first,
and most obvious, site to bookmark is PHPnet
(www. php.net), the official site for PHP.

Secondarily, you should familiarize yourself
with Zend (www.zend. com), the home page
for the creators of PHP’s core. The site con-
tains numerous downloads plus a wealth of
other resources—straight from the masters,
so to speak.

432

www.php.net/docs.php
www.php.net/manual/en/
www.php.net/manual/en/
www.php.net/functionname
www.php.net/number_format
www.php.net
www.zend.com

Resources and Next Steps

For information on specific topics,
PHPBuilder (www. phpbuilder.com) is a good
place to turn. The site has dozens of articles
explaining how to do particular tasks using
PHP. On top of that, PHPBuilder provides
support forums and a code library where
programmers have uploaded sample scripts.

W3Schools (www.w3schools. com) is a good
general Web development site, but it also
focuses a good portion of its energies on PHP.
For a cohesive look at developing dynamic
Web sites using PHP, HTML, CSS, and
JavaScript, this is an excellent place to turn.

One final Web reference is the PHP Coding
Standard, available through http://www.
DMCInsights.com/1links/2. The standard is
a document that makes recommendations
for programming in PHP in terms of proper
format and syntax for variable names, con-
trol structures, and so forth. You shouldn't
feel obligated to abide by these rules, but they
provide some solid and well-thought-out
recommendations that can help minimize
€ITOrS as you program.

Code repositories

There's no shortage of code libraries online
these days. Due to the generous (and often
showy) nature of PHP programmers, many
sites have scores of PHP scripts, organized
and available for download. The best online
code repositories are as follows:

& WeberDev (www.weberdev.com/maincat.
php3?categoryID=106&category=PHP)

¢ HotScripts (www. hotscripts.com/PHP/).

¢ DPX:the PHP Code Exchange
(http://px.sklar.com)

& PHP Resource Index
(http://php.resourceindex.com)

¢ DPHP Classes Repository
(www.phpclasses.org)

433

$323N0S3Y dHd INITNO

www.phpbuilder.com
www.w3schools.com
http://www.DMCInsights.com/links/2
http://www.DMCInsights.com/links/2
www.weberdev.com/maincat.php3?categoryID=106&category=PHP
www.weberdev.com/maincat.php3?categoryID=106&category=PHP
www.hotscripts.com/PHP/
www.phpclasses.org
http://px.sklar.com
http://php.resourceindex.com

ONLINE PHP RESOURCES

Appendix B

You can also find code examples at Zend and
PHPBuilder or by searching the Web. There’s
even a search engine dedicated to finding
code: www. koders . com.

Newsgroups and mailing lists

If you have access to newsgroups, you can
use them as a great sounding board for ideas
as well as a place to get your most difficult
questions answered. Of course, you can
always give back to the group by offering your
own expertise to those in need.

The largest English-language PHP newsgroup
is comp . lang.php. You may be able to access
it through your ISP or via a pay-for-use
Usenet organization. Newsgroups are also
available in languages other than English.

The PHP Web site lists the available mail-
ing lists you can sign up for at www. php.net/
mailing-lists.php.

Before you post to any newsgroup or mailing
list, it will behoove you to read Eric Steven
Raymond’s “How to Ask Questions the
Smart Way” at www. catb.org/~esr/fags/
smart-questions.html. The ten minutes
spent reading that document will save you
hours when you go asking for assistance.

434

www.koders.com
www.php.net/mailing-lists.php
www.php.net/mailing-lists.php
www.catb.org/~esr/faqs/smart-questions.html
www.catb.org/~esr/faqs/smart-questions.html

Resources and Next Steps

Database Resources

Which database resources will be most
useful to you depends, obviously, on which
database management system (DBMS) you'e
using. The most common database used with
PHP is probably MySQL, but PHP supports all
of the standard databases.

To learn more about using MySQL, begin
with the official MySQL Web site (www.mysql.
com). You can download the MySQL manual
to use as a reference while you work. A hand-
ful of books are also available specifically on
MySQL, including my own MySQL: Visual
QuickStart Guide, 2nd Edition (Peachpit
Press, 2006).

If youre using MySQL, don't forget to
download and install phpMyAdmin (www.
phpmyadmin.net). Written in PHP, this is an
invaluable tool for working with a database. If
you'e using PostgreSQL or even Oracle, you
can find similar tools available for interfacing
with them. Every database application also
has its own mailing lists and newsgroups.

Another area of database resources you
should delve into is SQL. Web sites discuss-
ing SQL, the language used by every database
application, include the following:

¢ SQL Course (www.sqlcourse.com)

& A Gentle Introduction to SQL
(www.sqlzoo.net)

¢ W3Schools SQL Tutorial
(www.w3schools.com/sql)

¢ SQL.org (www.sql.org)

My PHP 6 and MySQL 5 for Dynamic Web
Sites: Visual QuickPro Guide (Peachpit Press,
2008) also discusses SQL and MySQL in
much greater detail than this book.

435

S3J3N0S3Y Isvavivq

www.mysql.com
www.mysql.com
www.phpmyadmin.net
www.phpmyadmin.net
www.sqlcourse.com
www.sqlzoo.net
www.w3schools.com/sql
www.sql.org

Topr TEN FREQUENTLY ASKED QUESTIONS

Appendix B

Top Ten Frequently Asked
Questions (or Problems)

Debugging is a valuable skill that takes

time and experience to fully develop. But
rather than send you off on that journey
ill-equipped, I've included the ten most fre-
quently seen problems in PHP scripts, along
with the most likely causes. First, though,
here are five of my best pieces of advice when
it comes to debugging a problem:

1. Know what versions of PHP youre
running,
Some problems are specific to a version
of PHP. Use a phpinfo() script to test the
version in use whenever you go to use a
server for the first time. Also make sure
you know what version of MySQL you'e
using, if applicable, the operating system,
the Web server (e.g., Apache 2.2), etc.

2. Run all PHP scripts through a URL.

If you don't run a PHP script through a
URL—and this includes the submission of
a form to a PHP script, the Web server will
not handle the request, meaning that PHP
will never execute the code.

3. Trust the error message!
Many beginners have more difficulty than
they should in solving a problem because
they don't believe the error message they
see. While some of PHP’s error messages
are cryptic and even a small few can be
misleading, if PHP says there’s a problem on
line 22, the problem is probably on line 22.

4. Avoid “trying” things to fix a problem!

If youTre not sure as to what's causing the

problem and what the proper fix is, avoid
trying random things as a solution. You'll
likely create new issues this way and only
further confuse the original problem.

436

Resources and Next Steps

00 Variables =
| http://localhost/~larryullman/variables.php ﬁ' v

Notice: Undefined variable: state in /Users/larryullman
/Sites/variables.php on line 18

The address is:
100 Main Street
State College 16801

Figure B.1 Errors complaining about undefined
variables or indexes often come from spelling or
capitalization mistakes.

5. Take a break!

The best piece of advice I can offer is to
step away from the computer and take a
break. I've solved many, many problems
this way. Sometimes a clear head is what
you really need.

Moving on, here are the top ten likely prob-
lems you'll encounter in PHP:

1. Blank Web pages

If you see a blank screen in your Web
browser after submitting a form or load-
ing a PHP script, it's most likely because
an error occurred that terminated the
execution of the page. First check the
HTML source code to see if it's an HTML
problem. Then turn on display_errors
in your php.ini configuration file or PHP
script to see what PHP problem could be
occurring.

2. Undefined variable or undefined index
error (Figure B.1)

These errors occur when error reporting
is set on its highest level, and they may or
may not indicate a problem. Check the
spelling of each variable or array index to
make sure it’s correct. Then, either change
the error reporting settings or initialize
variables prior to referring to them. Also
make sure, of course, that variables that
should have a value actually do!

3. Variables don't have a value

Perhaps you referred to a variable by the
wrong name. Double-check your capital-
ization and spelling of variable names,
and then be certain to use $_GET, $_POST,
$_COOKIE, and $_SESSION as appropriate.
If need be, use the print_r() function to
see the name and value of every variable.

continues on next page

437

SNOILSINDY AINSY ATLNINDIYS NI] dO]

Topr TEN FREQUENTLY ASKED QUESTIONS

Appendix B

4. Call to undefined function... error

Such an error message means youre
attempting to use a function that PHP
doesn't have. This problem can be caused
by a misspelling of a function name, failure
to define your own function before calling
it, or using a function that’s not available
in your version of PHP. Check your spell-
ing and the PHP manual for a non-user-
defined function to find the problem.

5. Headers already sent error (Figure B.2)

This error message indicates that you've
used an HTTP header-related function—
header(), setcookie(), or session_
start()—after the Web browser has
already received HTML or even a blank
space. Double-check what occurs in a
script before you call any of these func-
tions, or use output buffering to avoid
the hassle. You can also make use of
output buffering to prevent these errors
from occurring.

6. Access denied error (Figure B.3)

If you see this message while attempting
to work with a database, then the user
name, password, and host combination
youre using doesn’t have permission to
access the database. This isn't normally

a PHP issue. Confirm the values that are
being used, and attempt to connect to the
database using a different system (such as
the MySQL client).

ano Login [=}
Lagin Form

Users who ure logged m can tuke advantage o
cerain feamres like this, that, and the other thing.

Warning: Cannot modify header information - headers
fulready sent by (outpul started at /Users/larryullmun/Siles

himl:6) in MUsers/arry

Voginphp on line 21

Figure B.2 Some functions create headers already
sent errors if called at the wrong time.

®00 Connect to MySQL [=]

‘Warning: mysql_connect() [function.mysql-connect]:
Access denied for user 'username' @ localhost' (using
password: YES) in /Users/larryullman/Sites
/mysql_test.php on line 13

Could not connect to MySQL.

Figure B.3 If the MySQL access information is
incorrect, you’ll see a message saying that database
access has been denied.

438

Resources and Next Steps

©) Mozilla Firefox E]|z|

File Edit Wiew History Bookmarks Tools Help

l: |j |http:I,rocthost:8000,1’he||04.php

£

Parse ervor: syntax error, unexpected ' in C:'Program
Files'Abyss Web Serverhtdocs\hellod.php online 18

Figure B.4 Parse errors are all too common and
prevent scripts from executing.

7.

10

Supplied argument is not a valid MySQL
result resource error

This is another database-related error
message. The message means that a
query result is being used inappropri-
ately. Most frequently, this is because
you'e trying to fetch rows from a query
that didn’t return any records. To solve
this problem, print out the query being
run and test it using another tool (such
as the MySQL client or phpMyAdmin).
Also check that you've been consistent
with your variable names.

. Preset HTML form values are cut off

You must put the value attribute of an
HTML form input within double quota-
tion marks. If you fail to do so, only the
part of the value up to the first space will
be set as that input’s value.

Conditionals or loops behave unpredictably

These logical errors are quite common.
Check that you haven't used the wrong
operator (such as = instead of ==) and
that you refer to the proper variables.
Then use print() statements to let you
know what the script is doing.

Parse errors (Figure B.4)

Parse errors are the most ubiquitous
problems you'll deal with. Even the most
seasoned PHP programmer sees them
occasionally. Check that every statement
concludes with a semicolon and that all
quotation marks, parentheses, square
braces, and curly brackets are evenly
paired. If you still can't find the parse
error, comment out large sections of the
script using the /* and */ characters.
Uncomment a section at a time until
you see the parse error again. Then you'll
know where in the script the problem is
(or most likely is).

439

SNOILSINDY AINSY ATLNINDIYS NI] dO]

NEXT STEPS

Appendix B

Next Steps

'This book will get you started using PHP, but
there are a few topics that you may want to
investigate further.

Security

Web servers, operating systems, databases,
and PHP security are all topics that could merit
their own books. Although this book tries

to demonstrate writing secure Web applica-
tions, theres always room for you to learn more
in this area. Start by checking out these sites:

¢ A Studyin Scarlet (www.securereality.
com.au/studyinscarlet.txt)

& W3C Security Resources (waw.w3.org/
Security)

The first is an article about writing secure
PHP code. The second is the World Wide
Web Consortiumss resources page for
Web-related security issues.

You should also read the relevant sections of
the PHP manual and the manual for the data-
base you'e using. Searching the Internet for
PHP and security will turn up many interest-
ing articles as well.

Object-Oriented Programming

The subject of objects and object-oriented
programming (OOP) is not covered in this
book for two reasons:

1. It's well beyond the scope of a beginner’s
guide.

2. You won't be restricted as to what you can
do in PHP by not understanding objects.

When you decide you want to learn the
subject, you can search the PHP sites for
tutorials, check out a framework (see the
next section of the appendix), or read my PHP
5 Advanced: Visual QuickPro Guide (Peachpit
Press, 2007). I dedicate around 150 pages

of that book just to OOP (and there are still
aspects of OOP that I didn’t get to)!

Frameworks

A framework is an established library of code
that you can use to develop sophisticated
Web applications. By reusing someone else’s
proven PHP, you can quickly build parts or all
of a Web site.

There are many PHP frameworks available,
starting with PEAR. The PEAR library is an
immense repository of PHP code, written
using objects (classes, technically). Even if
you don't use objects yourself or you barely
understand the concept, you can still get alot
of value out of the PEAR Web site (http://
pear.php.net). PEAR and its Web site pro-
vide free, wonderful code and demonstrate
good PHP coding style. PECL (http://pecl.
php.net) is PEAR’s more powerful sibling.

Another framework to consider is the Zend
Framework (http://framework.zend.com). A
relative newcomer, this framework has a lot
of benefits and is well documented.

Many people love frameworks and what they
offer. On the other hand, it does take some
time to learn how to use a framework, and
customizing the framework’s behavior can
be daunting.

440

www.securereality.com.au/studyinscarlet.txt
www.securereality.com.au/studyinscarlet.txt
www.w3.org/Security
www.w3.org/Security
http://pear.php.net
http://pear.php.net
http://pecl.php.net
http://pecl.php.net
http://framework.zend.com

Resources and Next Steps

JavaScript and Ajax

JavaScript is a client-side technology that
runs in the Web browser. It can be used to
add various dynamic features to a Web site,
from simple eye candy like image rollovers to
interactive menus and forms. Because it runs
within the Web browser, JavaScript provides
some functionality that PHP cannot. And,
like PHP, JavaScript is relatively easy to learn
and use. For more, see:

¢ JavaScript.com (www. javascript.com)

¢ W3Schools JavaScript pages (www.
w3schools.com/js/)

Ajax (which either means Asynchronous
JavaScript and XML or doesn't, depending
upon whom you ask) has been all the rage

in the Web development community since
around 2005. This technology uses JavaScript
to communicate with the server without the
user knowing it. The net effect is a Web site
that behaves more like a desktop application.
For more, see:

¢ Ajaxian (www.ajaxian.com)

¢ CrackAjax.net (www.crackajax.net)

Other Books

It is my hope that after reading this book
you'll be interested in learning more about
PHP and Web development in general. While
I could recommend books by other writers,
there’s an inherent conflict there and my
opinion as a rival writer would not be the
same as yours as a reader. So, instead, I'll just
quickly highlight a couple of my other books
and how they compare to this one.

The PHP 6 and MySQL 5 for Dynamic Web
Sites: Visual QuickPro Guide (Peachpit Press,
2008) is kind of a sequel to this one. There is
some overlap in content, particularly in the
early chapters, but the examples are different
and it goes at a faster pace. MySQL and SQL
in particular get a lot more coverage, and
there are three different example chapters: a
multilingual forum, a user registration and
login system, and an e-commerce setup.

My PHP 5 Advanced: Visual QuickPro Guide
(Peachpit Press, 2007) is kind of a sequel to
the PHP and MySQL book just mentioned.
This book is much more advanced, spend-
ing alot of time on topics such as OOP and
PEAR.It’s not intended to be read as linearly
as this one, but rather each chapter focuses
on a specific topic.

The MySQL: Visual QuickStart Guide, Second
Edition (Peachpit Press, 2006) looks almost
exclusively at just MySQL and SQL. Although
there are four chapters covering languages used
to interact with MySQL—PHP, Perl, and Java,
plus a techniques chapter, this book largely
addresses things like installation, administra-
tion, and maximizing your MySQL knowledge.

Finally, my Building a Web Site with Ajax:
Visual QuickProject Guide (Peachpit Press,
2008) walks through the process of coding an
Ajax-enabled Web site. It also uses PHP and
MySQL, but those technologies aren't taught
in the same way that JavaScript and Ajax are.

441

Sd3ilG 1LX3N

www.javascript.com
www.w3schools.com/js/
www.w3schools.com/js/
www.ajaxian.com
www.crackajax.net

TABLES

Appendix B

Tables

This book has a handful of tables scattered
about, the three most important of which are
reprinted here as a convenient reference. You'll
also find one new table that lists operator pre-
cedence (Table B.1). This partial list goes from
highest to lowest (for example, multiplication
takes precedence over addition).

Table B.2 lists PHP’s main operators and
their types. It's most important to remember
that a single equals sign (=) assigns a value to
a variable, whereas two equals signs (==) are
used together to check for equality.

Table B.3 indicates the modes you can use
when opening a file. Which you choose deter-
mines what PHP can do with that file—write
to it, read from it, and so forth.

The various formats for the date() function
may be one of the hardest things to remem-
ber. Keep Table B.4 nearby when youre using
the date() function.

Table B.1

Operator Precedence

Dt -
*/ %

+-

Table B.2
PHP’s Operators
OPERATOR USAGE TyPe
+ Addition Arithmetic
- Subtraction Arithmetic
* Multiplication Arithmetic
/ Division Arithmetic
Modulus (remainder Arithmetic
of a division)
++ Incrementation Arithmetic
Decrementation Arithmetic
= Assigns a value to Assignment
avariable
== Equality Comparison
= Inequality Comparison
< Less than Comparison
> Greater than Comparison
<= Less than or equal to Comparison
>= Greater than orequalto | Comparison
! Negation Logical
AND And Logical
&& And Logical
OR Or Logical
Il Or Logical
. Concatenation String
XOR Or not Logical
= Concatenates to the Combined
value of a variable concatenation
and assignment
+= Adds to the value Combined
of a variable arithmetic and
assignment
-= Subtracts from the Combined
value of a variable arithmetic and
assignment

442

Resources and Next Steps

Table B.3 Table B.4
fopen() Modes date() Function Formatting
MobpE MEANING CHARACTER MEANING EXAMPLE
r Read only; begin reading at the start of Y Year as 4 digits 2004
the file. y Year as 2 digits 04
r+ Read or write; begin at the start of the file. L Is it a leap year? 1 (for yes)
w Write only; create the file if it doesn’t exist, n Month as 1 or
and overwrite any existing contents. 2 digits b
W+ Re.ad or write; create the ﬁl_e i_fit doesn’t m Month as 2 digits 02
exist, and overwrite any existing contents
(when writing). F Month February
a Write only; create the file if it doesn’t exist, M Month as 3 letters Feb
and append the new data to the end of the j Day of the month
file (retain any existing data and add to it). as 1 or 2 digits 8
a+ Read or write; create the file if it doesn’t d Day of the month
exist, and append the new data to the end as 2 digits 08
of the file (when writing). 1 (lowercasel) | Day of the week Monday
X Write only; create thg fileifit d0e§n‘t fexist, D Day of the week
but do nothing (and issue a warning) if the as 3 letters Mon
file does exist.
. I , w Day of the week
X+ Re.ad or write; crefate the ﬁ!e ifit doesn‘t as a single digit 0 (Sunday)
exist, but do nothing (and issue a warning) Day of the year
if the file already exists (when writing). z :
v exists Y 0to365 189
t Number of days
in the month 31
S English ordinal
suffix for a day,
as 2 characters rd
g Hour; 12-hour format
as1or2 digits 6
G Hour; 24-hour format
as 1 or 2 digits 18
h Hour; 12-hour format
as 2 digits 06
H Hour; 24-hour format
as 2 digits 18
i Minutes 45
s Seconds 18
u Microseconds 1234
a amor pm am
A AM or PM PM
] Seconds since
the epoch 1048623008
e Timezone uTC
I (capital i) Is it daylight saving? | 1 (for yes)
0 Difference from GMT | +0600

443

s3iav]

This page intentionally left blank

INDEX

A

abs() function, 88

absolute paths, 198

Abyss, 10

access denied error, 438

action attributes, 48

addition operators, 75

Adobe Dreamweaver, 3

Ajax, 441

Apache, 10

arguments, 16
adding to cookies, 254-257
functions that take, 279-282
setting default values, 283-285

arithmetic operators, 75-79

array() function, 154

array_merge() function, 160

arrays, 151
adding elements to, 158-160
conventions, 153
converting to strings, 174-178
creating, 154-157
defined, 152
deleting elements, 158
merging, 160
multidimensional, 165-169
retrieving elements, 161-164
sorting, 170-173

using HTML form to create, 179-184

variables, 40
arsort() function, 170
asort() function, 170
assignment operators, 41
associative arrays, 40, 157

back referencing, regular expressions, 410

BBEdit, 3, 393

blank Web pages, 437

blog site scripts, databases, 345
creating, 355-357
deleting data, 377-382
inserting data, 363-367
MySQL, 348-354
retrieving data, 371-376
securing query data, 368-370
selecting, 355-357

SQL (Structured Query Language), 346-347

tables, 358-362
updating data, 383-390
$books arrays, 166
break constructs, 145
browsers
sending HTML to, 20-21
sending information to, 16-18
testing scripts, 14-15
buffering output, 227-230

Building a Web Site with Ajax: Visual

QuickProject Guide, 441

C

camel-hump style, 37

Cascading Style Sheets (CSS), 3
templates, 193

Castro, Elizabeth, xviii

ceil() function, 88

character classes, 404

checkboxes, 179-184

445

X3aN|

INDEX

Index

checkdate() function, 129

chgrp() function, 302

chmod() function, 302

chown() function, 302

classes, regular expressions, 404-405
clients, xi

code repositories, 433

commands, SQL (Structured Query Language),

346-347
comments, adding to scripts, 25-27
companion Web site, xxii
comparison operators, 130-133
concatenate strings, 93-96
conditionals
elseif, 138-141
if, 121-123
if-else, 127-129
nesting, 134
switch, 142-145
constants
error reporting, 62
Web applications, 200-201
defining, 201-202
printing, 203-204
constructs, 145
continue constructs, 145
control structures, 115
elseif conditional, 138-141
if conditional, 121-123
if-else conditional, 127-129
loops, 146-150
operators
comparison, 130-133
logical, 134-137
registration form, 116-120
switch conditional, 142-145
validation functions, 124-126
cookies, 237
adding parameters, 254-257
creating, 241-248
debugging, 240
defined, 238-239
deleting, 258-261
retrieving values, 248-253
versus sessions, 262
cost calculator forms, 72-74
Crimson Editor, 3
cross-platforms, xi
cross-site scripting (XSS) attacks, 100
crypt() function, 107
CSS (Cascading Style Sheets), 3
templates, 193

D

data, 237

cookies
adding parameters, 254-257
creating, 241-248
debugging, 240
defined, 238-239
deleting, 258-261
retrieving values, 248-253
versus sessions, 262
databases
deleting, 377-382
inserting, 363-367
retrieving, 371-376
securing query, 368-370
updating, 383-390
files, 297
creating directories, 331-338
directory navigation, 325-330
locking, 311-313
permissions, 298-302
reading from, 314-316
reading incrementally, 339-344
uploads, 317-324
writing to, 303-310
form validation functions, 124-126
manually sending to a page, 65-70
receiving in HTML form, 54-58
sessions
accessing variables, 267-268
versus cookies, 262
creating, 263-266
defined, 262
deleting, 269-270

Database Management Systems (DBMSs), 345
databases, 345

creating, 355-357
data
deleting, 377-382
inserting, 363-367
retrieving, 371-376
securing query, 368-370
updating, 383-390
MySQL
connecting to, 348-351
error handling, 352-354
resources, 435
selecting, 355-357
SQL (Structured Query Language), 346-347
tables, 358-362

date() function, formatting, 205, 443

446

Index

dates
variables, 38
Web applications, 205-207
DBMSs (Database Management Systems), 345
debugging
cookies, 240
PHP
frequently asked questions, 436-439
steps, 28-29
testing scripts, 10
in browser, 14-15
FTP to server, 11-13
decoding strings, 103-107
decremental adjustments, 84-85
decrypting scripts, 107
deprecated tags, 4
die constructs, 145
directories
creating, 331-338
navigation, 325-330
writable, 318
division operators, 75
Dreamweaver, 3

E

EditPlus, 3
elements, arrays, 153
adding to, 158-160
deleting, 158
retrieving, 161-164
elseif conditionals, 138-141
email
enabling mail() function, 429
Web applications, 222-226
empty() function, 124-126
empty strings, 39
encoding, 5
encoding strings, 103-107
encrypting scripts, 107
ereg() function, 392
eregi() function, 392
eregi_replace() function, 392, 407
ereg_replace() function, 392
error_report() function, 62
errors
displaying in HTML forms, 59-61
frequently asked questions, 436-439
handling in MySQL, 352-354
reporting, 62-64
escaping characters, 20-21
exit constructs, 145
explode() function, 174
external files, Web applications, 194-199

F

fclose() function, 303
feedback forms, 48-51, 121-123
fgets() function, 339
fileatime() function, 330
file_exists() function, 299
file_get_contents() function, 316
filemtime() function, 325, 329
fileowner() function, 330
fileperms() function, 330
file_put_contents() function, 310
files, 297
directories
creating, 331-338
navigation, 325-330
locking, 311-313
paths, 307
permissions, 298
creating text file, 299
setting on computer, 301-302
setting on remote server, 300
reading from, 314-316
reading incrementally, 339-344
uploads, 317-324
writing to, 303-310
$_FILES array, 317-318
filesize() function, 329
FileZilla, 10
firewalls, 412
flock() function, 311
floor() function, 88
footer files, templates, 192-193
fopen() modes, 303, 443
for loops, 146-150
foreach loops, 146-150
<form> tag, 48
forms
cost calculator, 72-74
data validation functions, 124-126
feedback, 121-123
forum posting, 90-92
HTML (Hypertext Markup Language), 47
adding methods to scripts, 52-53
creating, 48-51
displaying errors, 59-61
entering data in database, 364-367
error reporting, 62-64
handling with PHP, 208-213
manually sending data to a page, 65-70
receiving and processing data, 54-58
using to create arrays, 179-184
registration, 116-120
sales-cost calculator, 75-79

447

X3aN|

INDEX

Index

forum posting forms, 90-92 html_entity_decode() function, 102
frameworks, 440 htmlspecialchars() function, 99, 214
frequently asked questions, 436-439 HTTP (Hypertext Transfer Protocol), 231-236
function_exists() function, 278

functions |

array sorting, 170

call to undefined, 438

creating, 271-273
basic, 274-279
default argument values, 283-285
returning a value, 286-290
taking arguments, 279-282 .
variable scope, 291-296 index

mathematical, 88 strings, 108
PHP manual, 19 undefined errors, 437

validation. 124-126 indexed arrays, 40, 157
fwrite() function, 303 ini_set() function, 60

if conditionals, 121-123
if-else conditionals, 127-129
implode() function, 174
include() function, 194
include_once() function, 199
incremental adjustments, 84-85

installation
MySQL
G Mac OS X, 415-418
GET methods, adding to scripts, 52-53 Windows, 412-414
get_magic_quotes_gpc() function, 397 PHP (Personal Home Page)
getrandmax() function, 88 Mac OS X, 415-418
Glish Web site, 193 Windows, 412-414
glob() function, 330 Web applications
global statements Mac OS X, 415-418
cost calculator form, 293-295 Windows, 412-414
functions, 291-292 XAMPP on Windows, 413-414
Internet Information Server, 10
H is_numeric() function, 124-126
is_readable() function, 316
header files, templates, 190-191 isset() function, 124-126
header() function, 227, 231-236 is_writable() function, 310
HotScripts, 433
HTML, XHTML, and CSS Sixth Edition: Visual l
QuickStart Guide, 6
HTML embedded, x JavaScript, 441
HTML for the World Wide Web with XHTML join() function, 178
and CSS: Visual QuickStart Guide, xviii
HTML (Hypertext Markup Language), 2 K
forms, 47
adding methods to scripts, 52-53 Ilf:i)e::,(él)?;él netion, 170
creating, 48-51 ksort() function, 170
displaying errors, 59-61
entering data in database, 364-367 L
error reporting, 62-64
handling with PHP, 208-213 language constructs, 16, 145
manually sending data to a page, 65-70 layout models, templates, 186-189
receiving and processing data, 54-58 leftcontent areas
using to create arrays, 179-184 CSS (Cascade Style Sheets), 193
manipulating within PHP functions, 99-102 templates, 188
preformatting tags, 35 Lerdorf, Rasmus, x
sending to browser, 20-21 A List Apart Web site, 193
white spaces, 22-24 1ist() function, 184
htmlentities() function, 99 literals, regular expressions, 399

448

Index

localhosts, 348
locking files, 311-313
logical operators, 134-137
login pages
handling HTML forms, 208-213
manipulating HTTP headers, 231-236
sessions, 237
accessing variables, 267-268
creating, 263-266
defined, 262
deleting, 269-270
loops, 146150

M

MacroMates TextMate, 3
Magic Quotes, 58, 397
mail() function, 222-226, 429
mailing lists, 434
make_date_menus() function, 281
MAMP installer, Max OS X installation, 415-418
manuals
online download, 432
PHP functions, 19
mathematical functions, 88
mcrypt_encrypt() function, 107
menus
create using defined function, 274-277
select, HTML forms, 50
merging arrays, 160
metacharacters, regular expressions, 400-401
methods, adding to scripts, 52-53
mktime() function, 205
money_format() function, 81
move_uploaded_file() function, 318
mt_rand() function, 88
multidimensional arrays, 40, 165-169
multiplication operators, 75
MySQL
command-line tool, 347
connecting to, 348-351
error handling, 352-354
extensions, 351
installation
Mac OS X, 415-418
Windows, 412-414
manual download, 435
PHP support, 346
users
creating, 426-427
privileges, 424-425
setting root password, 422-423
MySQL: Visual QuickStart Guide, 2nd Edition, 435
MySQL client, interfacing with MySQL server,
419-421

mysql_affected_rows() function, 377
mysql_error() function, 352
mysql_fetch_array() function, 376

MySQLi, 351

mysql_num_rows() function, 376

mysql_query() function, 346
mysql_real_escape_string() function, 369-370

natcasesort() function, 173

natsort() function, 173

nesting conditionals, 134

newlines, converting, 97-98

newsgroups, 434

nl2br() function, 97-98

notice errors, 62

number variables, 38

number_format() function, 80

numbers, 71
arithmetic operators, 75-79
creating cost calculator form, 72-74
decremental adjustments, 84-85
formatting, 80-81
generating random numbers, 86-88
incremental adjustments, 84-85
precedence, 82-83

o

ob_clean() function, 230
ob_end_flush() function, 230
ob_flush() function, 230
ob_get_contents() function, 230
ob_get_length() function, 230
object-oriented programming (OOP), 440
ob_start() function, 228
one-way encryption, 107
online resources

code repositories, 433

mailing lists, 434

newsgroups, 434

PHP manual, 432

PHPBuilder, 433

PHPnet, 432

W3Schools, 433

Zend, 432
OOP (object-oriented programming), 440
operators

comparison, 130-133

logical, 134-137

PHP, 442

precedence, 442
output buffering, 227-230

449

X3aN|

INDEX

Index

P

parameters, 16
adding to cookies, 254-257
functions that take, 279-282
parentheses, number precedence, 82
parse errors, 26, 439
defined, 62
variables, 43
password validation, 218
patterns
back referencing, 410
regular expressions
literals, 399
matching, 394-398
metacharacters, 400-401
replacing, 406-410
testing script, 395-396
period operators, concatenate strings, 93-96
permissions, files, 298
creating text file, 299
setting on computer, 301-302
setting on remote server, 300
Personal Home Page (PHP)
adding comments to scripts, 25-27
altering configuration, 428-429
basic syntax, 7-9
code processing, xv—xvi
configuring for file uploads, 323
debugging steps, 28-29
installation
Mac OS X, 415-418
Windows, 412-414
manual
functions list, 19
online download, 432
MySQL support, 346
overview, xx—ii
reasons to use, xiii—xiv
sending HTML to browser, 20-21
sending information to browser, 16-18
testing scripts, 10
user requirements, Xvii-xviii
version testing, 436
white space, 22-24
XHTML syntax, 2-6
PHP: Hypertext Preprocessor, x
PHP 5 Advanced: Visual QuickPro Guide, 441
PHP 6 and MySQL 5 for Dynamic Web Sites:
Visual QuickPro Guide, xxi
PHP Classes Repository, 433
PHP (Personal Home Page)
adding comments to scripts, 25-27

altering configuration, 428-429
basic syntax, 7-9
code processing, xv—xvi
configuring for file uploads, 323
debugging steps, 28-29
installation
Mac OS X, 415-418
Windows, 412-414
manual
functions list, 19
online download, 432
MySQL support, 346
overview, Xx-ii
reasons to use, xiii-xiv
sending HTML to browser, 20-21
sending information to browser, 16-18
testing scripts, 10
user requirements, xvii-xviii
version testing, 436
white space, 22-24
XHTML syntax, 2-6
PHP Resource Index, 433
PHP Web site, x
PHPBuilder, 433
phpinfo() function, 7, 428
phpinfo() script, 436
phpMyAdmin, 347
PHPnet, 432
POSIX Extended regular expressions, 111
classes, 404-405
compatibility, 391
defined, 392-393
literals, 399
matching patterns, 394-398
metacharacters, 400-401
quantifiers, 402-403
replacing patterns, 406-410
POST methods, adding to scripts, 52—-53
precedence, numbers, 82-83
predefined variables, 54
print() function
printing variable values, 41
sending HTML to browser, 20-21
sending information to browser, 16-18
printf() function, formatting numbers, 81
print_r() function
predefined variables, 32-35
print arrays, 156
privileges, MySQL users, 424-425
product cost calculator forms, 72-74
programming languages, x
PX, 433

450

Index

Q

quantifiers, regular expressions, 402-403
queries

securing data, 368-370

SQL, 346
quotation marks, variables, 44-46

R

radio buttons, HTML forms, 50
rand() function, 86-88
random numbers, generating, 86-88
range() function, 157
Raymond, Eric Steven, xxiii
readfile() function, 316
registration forms
comparison operators, 130-133
creating, 116-120
elseif conditionals, 138-141
if conditional, 121-123
if-else conditionals, 127-129
logical operators, 134-137
loops, 146-150
sending email, 222-226
sticky forms, 214-221
switch conditional, 142-145
user text files, 332-338
validation functions, 124-126
regular expressions, 111
back referencing, 410
classes, 404-405
compatibility, 391
defined, 392-393
literals, 399
matching patterns, 394-398
metacharacters, 400-401
quantifiers, 402-403
replacing patterns, 406-410
testing script, 395-396
relative paths, 198
remote servers, setting file permissions, 300
require() function, 194
require_once() function, 199
resetting arrays, 158
resources
databases, 435
date() function formatting, 443
fopen() modes, 443
online
code repositories, 433
mailing lists, 434
newsgroups, 434
PHP manual, 432

PHPBuilder, 433
PHPnet, 432
W3Schools, 433
Zend, 432
operator precedence, 442
PHP operators, 442
return statements, functions, 290
rightcontent areas
CSS (Cascade Style Sheets), 193
templates, 189
root users, MySQL client, 422-423
round() function, 80
rsort() function, 170

S

sales-cost calculator forms, 75-79
scalar variables
numbers, 71
arithmetic operators, 75-79
creating cost calculator form, 72-74
decremental adjustments, 84-85
formatting, 80-81
generating random numbers, 86-88
incremental adjustments, 84-85
precedence, 82-83
strings, 89
concatenation, 93-96
converting newlines, 97-98
decoding, 103-107
encoding, 103-107
forum posting form, 90-92

manipulating HTML tags within PHP

functions, 99-102
substrings, 108-114
scripting languages, x
scripts
adding comments, 25-27
adding to scripts, 52-53
blog site, 345
creating, 355-357
deleting data, 377-382
inserting data, 363-367
MySQL, 348-354
retrieving data, 371-376
securing query data, 368-370
selecting, 355-357

SQL (Structured Query Language), 346—-347

tables, 358-362

updating data, 383-390
creating in text editor, 8-9
debugging steps, 28-29
encrypting/decrypting, 107

451

X3aN|

INDEX

Index

scripts (continued)
HTML forms, 47
adding methods to scripts, 52-53
creating, 48-51
displaying errors, 59-61
entering data in database, 364-367
error reporting, 62-64
handling with PHP, 208-213
manually sending data to a page, 65-70
receiving and processing data, 54-58
using to create arrays, 179-184
login pages
handling HTML forms, 208-213
manipulating HTTP headers, 231-236
sessions, 237, 262-270
registration forms
comparison operators, 130-133
creating, 116-120
elseif conditionals, 138-141
if conditional, 121-123
if-else conditionals, 127-129
logical operators, 134-137
loops, 146-150
sending email, 222-226
sticky forms, 214-221
switch conditional, 142-145
user text files, 332-338
validation functions, 124-126
‘Web applications, 185
blank pages, 437
buffering output, 227-230
constants, 200-204
date and time, 205-207
email, 222-226
external files, 194-199
handling HTML forms, 208-213
installation, 412-418
manipulating HTTP headers, 231-236
sticky forms, 214-221
templates, 186-193
security, 440
file permissions, 298
creating text file, 299
setting on computer, 301-302
setting on remote server, 300
validation functions, 124-126
select elements, HTML forms, 50
separators, 174
server-side technologies, xi, 7
$_SERVER variable, 34
servers, xi
configuring to send email, 223
session_name() function, 266

sessions, 237
accessing variables, 267-268
versus cookies, 262
creating, 263-266
defined, 262
deleting, 269-270

session_set_cookies_params() function, 266

session_start() function, 227, 269
setcookie() function, 227, 241-247
shuffle() function, 170
sort() function, 170
split() function, 392
spliti() function, 392
sprintf() function, formatting numbers, 81
SQL Course site, 435
SQL injection attacks, 368
SQL (Structured Query Language), 346-347
SQL.org, 435
statements, 16
sticky forms, Web applications, 214-221
strcasecmp() function, 109
strcmp() function, 109
Strict mode, 4
string variables, 39
strings, 89
concatenation, 93-96
converting newlines, 97-98
converting to arrays, 174-178
decoding, 103-107
encoding, 103-107
forum posting form, 90-92
manipulating HTML tags within PHP
functions, 99-102
substrings
locating, 108-111
replacing, 112-114
stripos() function, 109
strip_tags() function, 99
str_ireplace() function, 112-114
stristr() function, 109
strlen() function, 109, 159
strnatcasecmp() function, 109
strnatcmp() function, 109
strpos() function, 109
str_replace() function, 112
strstr() function, 109
strtok() function, 108
strtolower() function, 112
strtoupper() function, 112
Structured Query Language (SQL), 346-347
str_word_count() function, 109
Study in Scarlet, 440
style tags, 3

452

Index

submit buttons, HTML forms, 51
substr() function, 109
substrings

locating, 108-111

replacing, 112-114
subtraction operators, 75
superglobals, 153
switch conditionals, 142-145

T

tables
creating in databases, 358-362
retrieving data from, 373-376
tags, 5
forms, 48
preformatting, 35
templates
footer files, 192-193
header files, 190-191
layout model, 186-189
testing scripts, 10
in browser, 14-15
FTP to server, 11-13
text editors, creating PHP scripts, 8-9
text files, creating, 299
text inputs, HTML forms, 50
textareas, HTML forms, 51
TextMate, 3
thanks scripts, 106-107
time, Web applications, 205-207
time() function, 205
timestamps, 205
timezone values, 206
touch() function, 299
tracking data, 237
cookies
adding parameters, 254-257
creating, 241-248
debugging, 240
defined, 238-239
deleting, 258-261
retrieving values, 248-253
versus sessions, 262
sessions
accessing variables, 267-268
versus cookies, 262
creating, 263-266
defined, 262
deleting, 269-270
trim() function, 113-114

U

uasort() function, 173
ucfirst() function, 112
ucwords() function, 112
undefined variable errors, 43
underscore styles, 37
Unicode, xi
unlink() function, 324
unset() function, 158
uploading files, 317-324
urldecode() function, 103-105
urlencode() function, 103-105
ursort() function, 173
user-defined functions, 271-273
basic, 274-279
default argument values, 283-285
returning a value, 286-290
taking arguments, 279-282
variable scope, 291-296
users, MySQL
creating, 426-427
privileges, 424-425
setting root password, 422-423
usort() function, 173

\'}

validation functions, 124-126
var_dump() function, 157, 169
variables, 31
arrays, 40, 151
adding elements to, 158-160
conventions, 153
converting to strings, 174-178
creating, 154-157
defined, 152
deleting elements, 158
merging, 160
multidimensional, 165-169
retrieving elements, 161-164
sorting, 170-173
using HTML form to create, 179-184
assigning values, 41-43
defined, 32
numbers, 71
arithmetic operators, 75-79
creating cost calculator form, 72-74
decremental adjustments, 84-85
formatting, 80-81
generating random numbers, 86-88
incremental adjustments, 84-85
precedence, 82-83

453

X3aN|

INDEX

Index

variables (continued)

printing predefined, 32-35

quotation marks, 44-46

scope, 291-296

strings, 89
concatenation, 93-96
converting newlines, 97-98
converting to arrays, 174-178
decoding, 103-107
encoding, 103-107
forum posting form, 90-92
manipulating HTML tags within PHP

functions, 99-102

substrings, 108-114

syntax, 36-37

types
arrays, 40
numbers, 38
strings, 39

undefined errors, 437

values not showing, 437

w

WAMP, 412
warning errors, 62
W3C Security Resources, 440
Web applications, 185
blank pages, 437
buffering output, 227-230
constants, 200-201
defining, 201-202
printing, 203-204
date and time, 205-207

email, 222-226
external files, 194-199
handling HTML forms, 208-213
installation
Mac OS X, 415-418
Windows, 412-414
manipulating HTTP headers, 231-236
sticky forms, 214-221
templates
footer files, 192-193
header files, 190-191
layout model, 186-189
Web document roots, 10, 12
Web sites, book companion, xxii, 431
WeberDev, 433
welcome pages, 232-236
while loops, 146, 150
white spaces, 22-24
wordwrap() function, 102
W3Schools, 433

X

XAMPP, installation on Windows, 413-414
XHTML
creating page, 3-6
syntax, 2-3
XHTML 1.0 Transitional pages, 4
XSS (cross-site scripting) attacks, 100

Y-Z
Zend, 432
Zend Web site, xii

454

This page intentionally left blank

o7 on- |

50, ST

vy o syoog SdAL B uSjsag s, seuBisag-uonN

lu_)pu_.-;u.-_l:;a.u_l

-

€ x31d IFgodayv

Get free online access
to this book!

And sign up for a free trial to Safari Books
Online to get access to thousands more!

With the purchase of this book you have instant online,
searchable access to it on Safari Books Online! And while you're
there, be sure to check out the Safari on-demand digital library
and its Free Trial Offer (a separate sign-up process)—where
you can access thousands of technical and inspirational books,
instructional videos, and articles from the world’s leading
creative professionals with a Safari Books Online subscription.

Simply visit www.peachpit.com/safarienabled and
enter code WEJUHXA to try it today.

Safari

Books Online

]

www.peachpit.com/safarienabled

	Table of Contents
	Introduction
	Chapter 1: Getting Started with PHP
	Basic XHTML Syntax
	Basic PHP Syntax
	Testing Your Script
	Sending Text to the Browser
	Sending HTML to the Browser
	Using White Space
	Adding Comments to Scripts
	Basic Debugging Steps

	Chapter 2: Variables
	What Are Variables?
	Variable Syntax
	Types of Variables
	Assigning Values to Variables
	Understanding Quotation Marks

	Chapter 3: HTML Forms and PHP
	Creating a Simple Form
	Using GET or POST
	Receiving Form Data in PHP
	Displaying Errors
	Error Reporting
	Manually Sending Data to a Page

	Chapter 4: Using Numbers
	Creating the Form
	Performing Arithmetic
	Formatting Numbers
	Understanding Precedence
	Incrementing and Decrementing a Number
	Creating Random Numbers

	Chapter 5: Using Strings
	Creating the HTML Form
	Connecting Strings (Concatenation)
	Handling Newlines
	HTML and PHP
	Encoding and Decoding Strings
	Finding Substrings
	Replacing Parts of a String

	Chapter 6: Control Structures
	Creating the HTML Form
	The if Conditional
	Validation Functions
	Using else
	More Operators
	Using elseif
	The Switch Conditional
	The for Loop

	Chapter 7: Using Arrays
	What Is an Array?
	Creating an Array
	Adding Items to an Array
	Accessing Array Elements
	Creating Multidimensional Arrays
	Sorting Arrays
	Transforming Between Strings and Arrays
	Creating an Array from a Form

	Chapter 8: Creating Web Applications
	Creating Templates
	Using External Files
	Using Constants
	Working with the Date and Time
	Handling HTML Forms with PHP, Revisited
	Making Forms Sticky
	Sending Email
	Output Buffering
	Manipulating HTTP Headers

	Chapter 9: Cookies and Sessions
	What Are Cookies?
	Creating Cookies
	Reading from Cookies
	Adding Parameters to a Cookie
	Deleting a Cookie
	What Are Sessions?
	Creating a Session
	Accessing Session Variables
	Deleting a Session

	Chapter 10: Creating Functions
	Creating and Using Simple Functions
	Creating and Calling Functions That Take Arguments
	Setting Default Argument Values
	Creating and Using Functions That Return a Value
	Understanding Variable Scope

	Chapter 11: Files and Directories
	File Permissions
	Writing to Files
	Locking Files
	Reading from Files
	Handling File Uploads
	Navigating Directories
	Creating Directories
	Reading Files Incrementally

	Chapter 12: Intro to Databases
	Introduction to SQL
	Connecting to MySQL
	MySQL Error Handling
	Creating and Selecting a Database
	Creating a Table
	Inserting Data into a Database
	Securing Query Data
	Retrieving Data from a Database
	Deleting Data in a Database
	Updating Data in a Database

	Chapter 13: Regular Expressions
	What Are Regular Expressions?
	Matching Patterns
	Using Literals
	Using Metacharacters
	Using Quantifiers
	Using Classes
	Matching and Replacing Patterns

	Appendix A: Installation and Configuration
	Installation on Windows
	Installation on Mac OS X
	Using the MySQL Client
	Creating MySQL Users
	PHP Configuration

	Appendix B: Resources and Next Steps
	Online PHP Resources
	Database Resources
	Top Ten Frequently Asked Questions (or Problems)
	Next Steps
	Tables

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

